cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A100669 Zeros of the Mertens function that are also prime.

Original entry on oeis.org

2, 101, 149, 163, 331, 353, 401, 419, 541, 607, 811, 823, 853, 877, 883, 919, 1013, 1279, 1289, 1291, 1297, 1523, 1531, 1543, 1861, 2017, 2099, 2113, 2309, 2689, 3607, 3613, 4603, 4637, 4723, 5107, 5113, 5197, 5261, 5849, 6011, 6067, 6089, 7187, 7853
Offset: 0

Views

Author

Robert Happelberg (roberthappelberg(AT)yahoo.com), Dec 05 2004

Keywords

Crossrefs

Cf. A028442.

Programs

  • Mathematica
    Select[Range[4000], Plus @@ MoebiusMu[Range[#]] == 0 && PrimeQ[#] &] (* Carl Najafi, Aug 17 2011 *)
  • PARI
    s=0;for(n=1,1e4,s+=moebius(n); if(!s && isprime(n), print1(n", "))) \\ Charles R Greathouse IV, Jan 28 2014

A209187 Sum of divisors of n minus cototient of n.

Original entry on oeis.org

1, 2, 3, 5, 5, 8, 7, 11, 10, 12, 11, 20, 13, 16, 17, 23, 17, 27, 19, 30, 23, 24, 23, 44, 26, 28, 31, 40, 29, 50, 31, 47, 35, 36, 37, 67, 37, 40, 41, 66, 41, 66, 43, 60, 57, 48, 47, 92, 50, 63, 53, 70, 53, 84, 57, 88, 59, 60, 59, 124, 61, 64, 77, 95, 67, 98, 67, 90, 71, 98, 71
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Plus @@ Divisors[n]) - (n - EulerPhi[n]), {n, 50}]
  • PARI
    a(n) = sigma(n) + eulerphi(n) - n; \\ Altug Alkan, Sep 30 2017
    
  • SageMath
    [sigma(n,1)+euler_phi(n)-n for n in range(1, 72)] # Stefano Spezia, Jul 20 2025

Formula

a(n) = A065387(n) - n. - Altug Alkan, Sep 30 2017
a(n) = A000203(n) - A051953(n). - Omar E. Pol, Sep 30 2017
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = 6/Pi^2 + Pi^2/6 - 1 = 1.252861... . - Amiram Eldar, Dec 08 2023

A209188 Smallest prime factor of n^2 + n - 1.

Original entry on oeis.org

5, 11, 19, 29, 41, 5, 71, 89, 109, 131, 5, 181, 11, 239, 271, 5, 11, 379, 419, 461, 5, 19, 599, 11, 701, 5, 811, 11, 929, 991, 5, 19, 29, 1259, 11, 5, 1481, 1559, 11, 1721, 5, 31, 1979, 2069, 2161, 5, 2351, 31, 2549
Offset: 2

Views

Author

N. J. A. Sloane, Mar 05 2012

Keywords

Crossrefs

Cf. A071182.

Programs

  • Magma
    [Min(PrimeFactors(n^2+n-1)):n in[2..70]];// Vincenzo Librandi, Sep 18 2016
    
  • Mathematica
    SPF[n_] := (FactorInteger[n])[[1]][[1]]; Flatten[Table[SPF[n^2 + (n - 1)], {n, 2, 50}]]
    Table[FactorInteger[n^2+n-1][[1,1]],{n,2,50}] (* Harvey P. Dale, Aug 20 2014 *)
  • PARI
    a(n) = vecmin(factor(n^2+n-1)[,1]); \\ Michel Marcus, Sep 18 2016

A209191 Numbers n such that digital root of n equals smallest prime factor of n.

Original entry on oeis.org

2, 3, 5, 7, 20, 21, 38, 39, 56, 57, 74, 75, 92, 93, 95, 110, 111, 128, 129, 133, 146, 147, 164, 165, 182, 183, 185, 200, 201, 218, 219, 236, 237, 254, 255, 259, 272, 273, 275, 290, 291, 308, 309, 326, 327, 344, 345, 362, 363, 365, 380, 381, 398
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2012

Keywords

Programs

  • Mathematica
    drspfQ[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&] == FactorInteger[ n][[1,1]]; Select[Range[2,400],drspfQ] (* Harvey P. Dale, Nov 11 2017 *)

Extensions

Prior Mathematica program replaced by Harvey P. Dale, Nov 11 2017

A209192 Numbers n such that digital root of n equals largest prime factor of n.

Original entry on oeis.org

2, 3, 5, 7, 12, 48, 50, 70, 128, 192, 196, 320, 448, 500, 700, 768, 1960, 2401, 3072, 3200, 4480, 5000, 5488, 7000, 8192, 8575, 12288, 12544, 19600, 20480, 24010, 28672, 30625, 32000, 44800, 49152, 50000, 54880, 67228, 70000, 78125, 85750, 109375, 125440
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2012

Keywords

Programs

  • Maple
    A010888 := proc(n)
        d := (add(d,d=convert(n,base,10))) mod 9 ;
        if d = 0 then
            return 9;
        else
            return d;
        end if;
    end proc:
    isA209192 := proc(n)
        A010888(n) = A006530(n) ;
    end proc:
    for n from 2 to 40000 do    if isA209192(n) then   printf("%d,",n) ;    end if; end do: # R. J. Mathar, Mar 22 2012
  • Mathematica
    drlpfQ[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]==FactorInteger[n][[-1,1]]; Select[Range[2,126000],drlpfQ] (* Harvey P. Dale, Sep 26 2024 *)

A111157 Numbers k such that sequence A_k in this database does not contain a prime.

Original entry on oeis.org

4, 7, 12, 35, 56, 66, 82, 118, 132, 141, 143, 144, 145, 152, 156, 173, 252
Offset: 1

Views

Author

N. J. A. Sloane, following a suggestion of Alonso del Arte, Oct 21 2005

Keywords

Comments

That is, the complete sequence A_k, not just the terms that are shown in the entry, does not contain a prime or the negative of a prime. The only exception to this is for sequences with keyword "dead", when only the visible terms are to be considered.
No other terms below 287. Is 287 a member? This requires proof.
I've checked A000287 up to a(25000) and can report that I found no prime. - Robert G. Wilson v, Jun 23 2014
A search of every term of A000287 of form a(2^k-2) has yielded no primes up to a(2^24-2). It shouldn't have any odd terms outside this subsequence, and assuming that its terms' factors are otherwise random, it has a 2.15*10^-8 probability of containing any prime at all. After A000287, the next difficult sequence is A000373, which should contain infinitely many primes, but has none within its first 10000 terms. - Matthew House, Nov 02 2024

Crossrefs

Cf. A111198.

Extensions

a(16) = 173 inserted by Matthew House, Nov 02 2024

A209186 Admission order to the USA of the n-th state in alphabetical order.

Original entry on oeis.org

22, 49, 48, 25, 31, 38, 5, 1, 27, 4, 50, 43, 21, 19, 29, 34, 15, 18, 23, 7, 6, 26, 32, 20, 24, 41, 37, 36, 9, 3, 47, 11, 12, 39, 17, 46, 33, 2, 13, 8, 40, 16, 28, 45, 14, 10, 42, 35, 30, 44
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2012

Keywords

A209189 Smallest prime factor of n^2 + n + 1.

Original entry on oeis.org

7, 13, 3, 31, 43, 3, 73, 7, 3, 7, 157, 3, 211, 241, 3, 307, 7, 3, 421, 463, 3, 7, 601, 3, 19, 757, 3, 13, 7, 3, 7, 1123, 3, 13, 31, 3, 1483, 7, 3, 1723, 13, 3, 7, 19, 3, 37, 13, 3, 2551
Offset: 2

Views

Author

N. J. A. Sloane, Mar 05 2012

Keywords

Programs

  • Mathematica
    Flatten[Table[SPF[n^2 + (n + 1)], {n, 2, 50}]]

A209193 Safe primes that are also highly cototient numbers.

Original entry on oeis.org

23, 47, 59, 83, 167, 839, 2099, 5879, 6719, 23099, 27299, 180179, 414959, 420419, 628319, 660659, 840839, 1141139, 1681679, 2042039, 2277659, 4084079, 5525519, 5705699
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2012

Keywords

Crossrefs

A005385 intersect A100827.

Extensions

a(19)-a(24) calculated from the b-file at A100827 by Amiram Eldar, Apr 09 2020

A209194 Sophie Germain primes that are also highly cototient numbers.

Original entry on oeis.org

2, 23, 83, 89, 113, 419, 509, 659, 1049, 1889, 3359, 4409, 9029, 10709, 11549, 13649, 20789, 23099, 57329, 84629, 90089, 113189, 115499, 207479, 210209, 270269, 314159, 324869, 330329, 420419, 570569, 658349, 660659, 810809, 840839, 1021019, 1138829
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2012

Keywords

Crossrefs

A005384 INTERSECT A100827.
Previous Showing 11-20 of 20 results.