cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A031399 Numbers n with no 4k+3 factors such that Pell equation x^2 - n y^2 = -1 insoluble.

Original entry on oeis.org

4, 8, 16, 20, 25, 32, 34, 40, 52, 64, 68, 80, 100, 104, 116, 128, 136, 146, 148, 160, 164, 169, 178, 194, 200, 205, 208, 212, 221, 232, 244, 256, 260, 272, 289, 292, 296, 305, 320, 328, 340, 356, 377, 386, 388, 400, 404, 410, 416, 424, 436, 452
Offset: 1

Views

Author

Keywords

References

  • "Advanced Number Theory" by Harvey Cohn.

Crossrefs

A377600 Positive integers D such that the generalized Pell equation X^2 - D Y^2 = -3 is solvable over the integers.

Original entry on oeis.org

1, 3, 4, 7, 12, 13, 19, 21, 28, 31, 39, 43, 52, 57, 61, 67, 73, 76, 84, 91, 93, 97, 103, 109, 111, 124, 127, 129, 133, 139, 147, 151, 157, 163, 172, 181, 183, 193, 199, 201, 211, 217, 228, 237, 241, 244, 247, 259, 268, 271, 273, 277, 283, 292, 301, 307, 309, 313, 327, 331, 337, 343, 364
Offset: 1

Views

Author

Robin Visser, Nov 02 2024

Keywords

Comments

Calculated using Dario Alpern's quadratic Diophantine solver, see link.

Examples

			The first fundamental solutions [x(n), y(n)] are (the first entry gives D(n)=a(n)):
[1, [1, 2]], [3, [0, 1]], [4, [1, 1]], [7, [2, 1]], [12, [3, 1]], [13, [7, 2]], [19, [4, 1]], [21, [9, 2]], [28, [5, 1]], [31, [11, 2]], [39, [6, 1]], [43, [13, 2]], [52, [7, 1]], [57, [15, 2]], [61, [5639, 722]], [67, [8, 1]], [73, [17, 2]], [76, [61, 7]], [84, [9, 1]], [91, [19, 2]], [93, [135, 14]], [97, [847, 86]], [103, [10, 1]], [109, [1399, 134]], [111, [21, 2]], [124, [11, 1]], [127, [293, 26]], [129, [159, 14]], [133, [23, 2]], [139, [224, 19]], [147, [12, 1]], [151, [86, 7]], [157, [25, 2]], [163, [932, 73]], [172, [13, 1]], [181, [11262809, 837158]], [183, [27, 2]], [193, [189743, 13658]], [199, [14, 1]], ...
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy.solvers.diophantine.diophantine import diop_DN
    def A377600_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda d:len(diop_DN(d,-3)), count(max(startvalue,1)))
    A377600_list = list(islice(A377600_gen(),63)) # Chai Wah Wu, Nov 03 2024

A377607 Positive integers D such that the generalized Pell equation X^2 - D Y^2 = 3 is solvable over the integers.

Original entry on oeis.org

1, 6, 13, 22, 33, 46, 61, 69, 73, 78, 94, 97, 109, 118, 141, 157, 166, 177, 181, 193, 213, 214, 222, 241, 249, 253, 262, 277, 286, 313, 321, 334, 337, 358, 366, 382, 393, 397, 409, 421, 429, 433, 438, 454, 457, 478, 481, 501, 502, 517, 526, 537, 541, 573, 598, 601, 613, 622, 649, 654, 661
Offset: 1

Views

Author

Robin Visser, Nov 02 2024

Keywords

Comments

Calculated using Dario Alpern's quadratic Diophantine solver, see link.

Examples

			The first fundamental solutions [x(n), y(n)] are (the first entry gives D(n)=a(n)):
[1, [2, 1]], [6, [3, 1]], [13, [4, 1]], [22, [5, 1]], [33, [6, 1]], [46, [7, 1]], [61, [8, 1]], [69, [108, 13]], [73, [94, 11]], [78, [9, 1]], [94, [223, 23]], [97, [10, 1]], [109, [9532, 913]], [118, [11, 1]], [141, [12, 1]], [157, [289580, 23111]], [166, [13, 1]], [177, [306, 23]], [181, [148, 11]], [193, [14, 1]], ...
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy.solvers.diophantine.diophantine import diop_DN
    def A377607_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda d:len(diop_DN(d,3)), count(max(startvalue,1)))
    A377607_list = list(islice(A377607_gen(),61)) # Chai Wah Wu, Nov 03 2024

A383734 Numbers k such that 2+k and 2*k are squares.

Original entry on oeis.org

2, 98, 3362, 114242, 3880898, 131836322, 4478554082, 152139002498, 5168247530882, 175568277047522, 5964153172084898, 202605639573839042, 6882627592338442562, 233806732499933208098, 7942546277405390632802, 269812766699283348307202, 9165691521498228451812098
Offset: 1

Views

Author

Emilio Martín, May 07 2025

Keywords

Comments

The limit of a(n+1)/a(n) is 33.97056... = 17+12*sqrt(2) = (3+2*sqrt(2))^2 (see A156164).

Examples

			98 is a term becouse 98+2=100 is a square and 98*2=196 is a square.
		

Crossrefs

Cf. A382209 (10+k and 10*k are squares).
Cf. A245226 (m such that k+m and k*m are squares).

Programs

  • Mathematica
    LinearRecurrence[{35, -35, 1}, {2, 98, 3362}, 20] (* Amiram Eldar, May 07 2025 *)
  • Python
    from itertools import islice
    def A383734_gen(): # generator of terms
        x, y = 1, 7
        while True:
            yield 2*x**2
            x, y = y, 6*y - x
    A383734_list = list(islice(A383734_gen(), 100))

Formula

a(n) = (1/2) * ((3+2*sqrt(2))^(2*n-1) + (3-2*sqrt(2))^(1-2*n)) - 1.
a(n) = -2*sqrt(2)*sinh(n*log(17+12*sqrt(2))) + 3*cosh(n*log(17+12*sqrt(2))) - 1.
a(n) = 2*A002315(n-1)^2.
a(n) = A075870(n)^2 - 2.
a(n) = 34*a(n-1) - a(n-2) + 32.
G.f.: 2 * (1 + 14*x + x^2) / ((1 - x)*(1 - 34*x + x^2)). - Stefano Spezia, May 08 2025

A240950 Numbers k such that the continued fraction for sqrt(k) has odd period, omitting those values of k of the form m^2+1.

Original entry on oeis.org

13, 29, 41, 53, 58, 61, 73, 74, 85, 89, 97, 106, 109, 113, 125, 130, 137, 149, 157, 173, 181, 185, 193, 202, 218, 229, 233, 241, 250, 265, 269, 274, 277, 281, 293, 298, 313, 314, 317, 337, 338, 346, 349, 353, 365, 370, 373, 389, 394, 397, 409, 421, 425, 433
Offset: 1

Views

Author

Takao Ito, Aug 04 2014

Keywords

Comments

p^2 - n*q^2 = -1 is solvable for integers p and q.
A031396 is the union of this sequence with A002522.

Examples

			sqrt(13) = [3;1,1,1,1,6].
sqrt(29) = [5;2,1,1,2,10].
		

Crossrefs

Extensions

More terms from Colin Barker, Dec 18 2014

A282341 Primes p of the form x^2 + y^2 such that q = (x^2 + 1)/y^2 is a prime less than p.

Original entry on oeis.org

349, 1049, 1733, 33749, 53849, 79549, 135449, 381949, 535849, 558149, 692249, 1036349, 1156249, 1483549, 1871449, 2304349, 3097769, 6181349, 6411049, 8809049, 10355549, 11102249, 16401701, 16491521, 22867549, 26419769, 27457889, 30603049, 31728577, 34176557
Offset: 1

Views

Author

Thomas Ordowski and Altug Alkan, Feb 12 2017

Keywords

Comments

The negative Pell equation x^2 - q*y^2 = -1, hence q = (x^2 + 1)/y^2.
Primes p = q are A002496.

Examples

			For prime p = 349 = 18^2 + 5^2 is q = (18^2 + 1)/5^2 = 13 prime < p.
		

Crossrefs

Subsequence of A002313.

Programs

  • PARI
    list(lim)=my(v=List(),x2,q,y,p); for(x=1,sqrtint(lim\4), x2=4*x^2; [q,y]=core(x2+1,1); p=x2+y^2; if(q

A377598 Positive integers D such that the generalized Pell equation X^2 - D Y^2 = -2 is solvable over the integers.

Original entry on oeis.org

2, 3, 6, 11, 18, 19, 22, 27, 38, 43, 51, 54, 59, 66, 67, 83, 86, 102, 107, 114, 118, 123, 131, 134, 139, 146, 162, 163, 166, 171, 178, 179, 187, 198, 211, 214, 227, 242, 243, 246, 251, 258, 262, 267, 278, 283, 291, 307, 326, 331, 339, 347, 354, 358, 363, 374, 379, 387, 402, 411, 418, 419
Offset: 1

Views

Author

Robin Visser, Nov 02 2024

Keywords

Comments

Calculated using Dario Alpern's quadratic Diophantine solver, see link.

Examples

			The first fundamental solutions [x(n), y(n)] are (the first entry gives D(n)=a(n)):
[2, [0, 1]], [3, [1, 1]], [6, [2, 1]], [11, [3, 1]], [18, [4, 1]], [19, [13, 3]], [22, [14, 3]], [27, [5, 1]], [38, [6, 1]], [43, [59, 9]], [51, [7, 1]], [54, [22, 3]], [59, [23, 3]], [66, [8, 1]], [67, [221, 27]], [83, [9, 1]], [86, [102, 11]], [102, [10, 1]], [107, [31, 3]], [114, [32, 3]], [118, [554, 51]], [123, [11, 1]], [131, [103, 9]], [134, [382, 33]], [139, [8807, 747]], [146, [12, 1]], [162, [140, 11]], [163, [8005, 627]], [166, [41242, 3201]], [171, [13, 1]], [178, [40, 3]], [179, [2047, 153]], [187, [41, 3]], [198, [14, 1]], ...
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy.solvers.diophantine.diophantine import diop_DN
    def A377598_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda d:len(diop_DN(d,-2)), count(max(startvalue,1)))
    A377598_list = list(islice(A377598_gen(),62)) # Chai Wah Wu, Nov 03 2024

A356488 Numbers k such that the equation x^2 - k*y^4 = -1 has a solution for which |y| > 2.

Original entry on oeis.org

2, 53, 314, 1042, 1685, 1825, 3281, 4586, 5521, 6770, 8597, 9050, 11509, 13858, 17498, 20369, 24737, 28085, 28130, 29041, 31226, 33226, 37141, 37585, 42965, 47402, 49205, 53954, 57125, 58913, 66193, 71674, 79682, 85685, 94421, 100946, 110410, 113290, 115202
Offset: 1

Views

Author

Jinyuan Wang, Aug 09 2022

Keywords

Comments

For k > 2, the equation x^2 - k*y^4 = -1 has at most one positive integer solution. If this solution (x, y) exists, we have v = y^2, where v is the smallest integer satisfying the Pell equation u^2 - k*v^2 = -1 (A130227).

Examples

			The equation x^2 - 2*y^4 = -1 has only two positive solutions (1, 1) and (239, 13), so 2 is in the sequence.
		

Crossrefs

Previous Showing 21-28 of 28 results.