cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A108527 Number of labeled mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 3, 20, 229, 3764, 80383, 2107412, 65436033, 2347211812, 95492023811, 4344109422388, 218499395486909, 12039757564700644, 721239945304498215, 46669064731537444820, 3243864647191662324601, 241046155271316751794596
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.

Crossrefs

Programs

  • Mathematica
    nmax=20; c[0]=0; A[x_]:=Sum[c[k]*x^k/k!,{k,0,nmax}]; Array[c,nmax]/.Solve[Rest[CoefficientList[Series[x-1-Log[1-A[x]]-(2-x)*A[x],{x,0,nmax}],x]]==0][[1]] (* Vaclav Kotesovec, Mar 28 2014 *)
  • PARI
    {a(n)=local(A=x+O(x^n)); for(i=0, n, A=intformal((1-A^2)/(1-x-2*A+x*A)+O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 28 2014

Formula

E.g.f. satisfies: (2-x)*A(x) = x - 1 - log(1-A(x)).
a(n) ~ c * n^(n-1) / (exp(n) * r^n), where r = 0.20846306198165450115960050053484328028... and c = 0.3060161306524907981116283162103879... - Vaclav Kotesovec, Mar 28 2014

A118789 Row sums of triangle A118788.

Original entry on oeis.org

1, 2, 9, 71, 800, 11659, 208173, 4398148, 107293711, 2967800711, 91777098006, 3137581240925, 117499040544197, 4783424590188490, 210333509575901445, 9934472399437068811, 501615620424564184408, 26963169913347131361647
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2006

Keywords

Comments

A032188 equals the main diagonal of triangle A118788; A032188(n) = number of labeled series-reduced mobiles (circular rooted trees) with n leaves.

Examples

			E.g.f.: A(x) = 1 + 1*x + 2*x^2/2! + 9*x^3/3! + 71*x^4/4! + ... =
exp(x + x^2/2! + 5*x^3/3! + 41*x^4/4! +... + A032188(n)*x^n/n! +...).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[n!/(n-k)! * SeriesCoefficient[(x/(2*x + Log[1-x]))^(n + 1), {x, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 01 2025 *)
  • PARI
    {a(n)=local(x=X+X^2*O(X^n));sum(k=0,n,n!/(n-k)!*polcoeff((x/(2*x+log(1-x)))^(n+1),k,X))}

Formula

E.g.f.: A(x) = exp( Sum_{n>=1} A032188(n)*x^n/n! ). As row sums of A118788, a(n) = Sum_{k=0..n} n!/(n-k)!*[x^k]{ x/(2*x + log(1-x)) }^(n+1).
a(n) ~ n^n / (2 * exp(n - 1/2) * (1 - log(2))^(n + 1/2)). - Vaclav Kotesovec, Sep 01 2025

A060694 A triangle related to rooted trees.

Original entry on oeis.org

1, 2, 1, 10, 8, 2, 82, 86, 36, 6, 938, 1202, 668, 192, 24, 13778, 20772, 14118, 5452, 1200, 120, 247210, 427828, 341122, 161688, 48312, 8640, 720, 5240338, 10228458, 9325398, 5184902, 1909920, 467784, 70560, 5040, 128149802, 278346286
Offset: 1

Views

Author

F. Chapoton, Apr 20 2001

Keywords

Comments

The rows sum to A006963, the alternating sum is A000311, the right column is A000142, the left column is related to A032188 (twice); the second-to-right column is A052582

Examples

			{1}, {2,1}, {10,8,2}, {82,86,36,6}, {938,1202,668,192,24}
		

Crossrefs

Formula

E.g.f. given by the Maple expression RootOf(-exp(_Z*x*t)+x*t*exp(_Z*x*t)+y*t*exp(-_Z+_Z*x*t)-y*t^2*x*exp(-_Z+_Z*x*t)+1-t+t*exp(-_Z+_Z*x*t)-x*t*exp(-_Z+_Z*x*t));

Extensions

More terms from Vladeta Jovovic, Apr 21 2001

A118787 Triangle where T(n,k) = n!*[x^k] ( x/(2*x + log(1-x)) )^(n+1), for n>=k>=0, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 12, 23, 41, 24, 60, 130, 255, 469, 120, 360, 870, 1860, 3679, 6889, 720, 2520, 6720, 15540, 32858, 65247, 123605, 5040, 20160, 58800, 146160, 328734, 689388, 1371887, 2620169, 40320, 181440, 574560, 1527120, 3638376, 8029980
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2006

Keywords

Comments

Row sums are A112487. Main diagonal is A032188(n) = number of labeled series-reduced mobiles (circular rooted trees) with n leaves.

Examples

			Triangle begins:
1;
1, 1;
2, 3, 5;
6, 12, 23, 41;
24, 60, 130, 255, 469;
120, 360, 870, 1860, 3679, 6889;
720, 2520, 6720, 15540, 32858, 65247, 123605;
5040, 20160, 58800, 146160, 328734, 689388, 1371887, 2620169; ...
Triangle is formed from powers of F(x) = x/(2*x + log(1-x)):
F(x)^1 = (1) + 1/2*x + 7/12*x^2 + 17/24*x^3 + 629/720*x^4 +...
F(x)^2 = (1 + x)/1! +17/12*x^2 + 2*x^3 + 671/240*x^4 ...
F(x)^3 = (2 + 3*x + 5*x^2)/2! + 4*x^3 + 1489/240*x^4 +...
F(x)^4 = (6 + 12*x + 23*x^2 + 41/6*x^3)/3! + 8351/720*x^4 +...
F(x)^5 = (24 + 60*x + 130*x^2 + 255*x^3 + 469*x^4)/4! +...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(x=X+X^2*O(X^(k+2)));n!*polcoeff((x/(2*x+log(1-x)))^(n+1),k,X)}

Formula

Main diagonal has e.g.f.: series_reversion[2*x+log(1-x)].

A269957 Triangle read by rows, T(n,k) = Sum_{j=k..n} A269940(n,j)*A269939(j,k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 5, 9, 0, 41, 210, 225, 0, 469, 5115, 14175, 11025, 0, 6889, 142492, 763350, 1455300, 893025, 0, 123605, 4566149, 41943090, 146522250, 212837625, 108056025, 0, 2620169, 166939742, 2462128095, 13973628900, 35936814375, 42141849750, 18261468225
Offset: 0

Views

Author

Peter Luschny, Mar 27 2016

Keywords

Examples

			Triangle starts:
[1]
[0, 1]
[0, 5, 9]
[0, 41, 210, 225]
[0, 469, 5115, 14175, 11025]
[0, 6889, 142492, 763350, 1455300, 893025]
		

Crossrefs

Programs

  • Sage
    F = lambda n,k,f: sum((-1)^(m+k)*binomial(n+k,n+m)*f(n+m,m) for m in (0..k))
    T = lambda n,k: sum(F(n, j, stirling_number1)*F(j, k, stirling_number2) for j in (k..n))
    for n in (0..6): print([T(n, k) for k in (0..n)])

Formula

T(n,n) = A001818(n).
T(n,1) = A032188(n+1) for n>=1.
Previous Showing 11-15 of 15 results.