cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A370099 a(n) = Sum_{k=0..n} binomial(2*n,k) * binomial(3*n-k-1,n-k).

Original entry on oeis.org

1, 4, 32, 292, 2816, 28004, 284000, 2919620, 30316544, 317222212, 3339504032, 35329425124, 375282559232, 4000059761572, 42760427177696, 458259268924292, 4921911787962368, 52965710906750084, 570951048018417440, 6164049197776406180, 66639047280436354816
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n, k)*binomial(3*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+x)^2/(1-x)^2 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1-x)^2/(1+x)^2 ).
a(n) = 2 * A103885(n) for n >= 1. - Peter Bala, Sep 16 2024
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] (1-x)^(n-1)/(1-2*x)^(2*n).
a(n) = Sum_{k=0..n} 2^k * binomial(2*n,k) * binomial(n-1,n-k).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(2*n+k-1,k) * binomial(n-1,n-k). (End)

A379244 G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^3)/(1 - x*A(x)) )^2.

Original entry on oeis.org

1, 4, 40, 540, 8400, 141876, 2528760, 46815116, 891483808, 17350187364, 343578992328, 6900588813564, 140230648164720, 2878066866407316, 59571280942854808, 1242093725341221996, 26064579113472078144, 550041399791036747460, 11665771061882347813224, 248527169321049466503132
Offset: 0

Views

Author

Seiichi Manyama, Dec 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+4*k+2, k)*binomial(3*n+3*k+1, n-k)/(n+2*k+1));

Formula

G.f.: B(x)^2 where B(x) is the g.f. of A364167.
a(n) = Sum_{k=0..n} binomial(2*n+4*k+2,k) * binomial(3*n+3*k+1,n-k)/(n+2*k+1).

A108436 Number of returns to the x-axis in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1).

Original entry on oeis.org

2, 14, 106, 862, 7378, 65550, 599002, 5594942, 53181730, 512784142, 5003410762, 49312114334, 490192537586, 4909102791694, 49482525122490, 501626536004734, 5111038278845506, 52312236295906830, 537605889306476074
Offset: 1

Views

Author

Emeric Deutsch, Jun 04 2005

Keywords

Examples

			a(2)=14 because there are 10 paths from (0,0) to (6,0) (see A027307): u(d)u(d), u(d)Ud(d), uud(d), uUdd(d), Ud(d)u(d), Ud(d)Ud(d), Udud(d), UdUdd(d), Uudd(d) and UUddd(d), the fourteen returns to the x-axis being shown between parentheses.
		

Crossrefs

Programs

  • Maple
    a:=n->2+(1/n)*sum((3*n-j)*2^(n-j)*binomial(n,j)*binomial(2*n,n-j-1)/(n+j+2),j=0..n-2): seq(a(n),n=1..21);

Formula

a(n) = Sum_{k=1..n} k*A108435(k).
a(n) = A032349(n+1) - A027307(n).
a(n) = 2 + (1/n)*Sum_{j=0..n-2} (3n-j)*2^(n-j)*binomial(n, j)*binomial(2n, n-j-1)/(n+j+2).
G.f.: A^2-A, where A=1+zA^2+zA^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
D-finite with recurrence 3*(n+1)*(2*n+1)*a(n) +3*(-34*n^2+18*n-1)*a(n-1) +(394*n^2-1197*n+908)*a(n-2) +2*(-4*n^2+51*n-113)*a(n-3) -2*(2*n-7)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 24 2022

A110682 A convolution triangle of numbers based on A027307.

Original entry on oeis.org

1, 2, 1, 10, 4, 1, 66, 24, 6, 1, 498, 172, 42, 8, 1, 4066, 1360, 326, 64, 10, 1, 34970, 11444, 2706, 536, 90, 12, 1, 312066, 100520, 23526, 4672, 810, 120, 14, 1, 2862562, 911068, 211546, 42024, 7410, 1156, 154, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 15 2005

Keywords

Comments

Triangle T(n,k) for A(x)^k = Sum_{n>=k} T(n,k)*x^n, where o.g.f. A(x) satisfies A(x) = (1+x*A(x)^2)/(1-x*A(x)^2). - Vladimir Kruchinin, Mar 16 2011

Crossrefs

Columns: A027307, A032349, A033296.

Programs

  • Mathematica
    T[n_, k_] := (k/(2*n - k))*Sum[Binomial[2*n - k, n - k - j]*Binomial[2*n - k + j - 1, 2*n - k - 1], {j, 0, n - k}]; Table[T[n, k], {n, 0, 25}, {k, 1, n}] // Flatten (* G. C. Greubel, Sep 05 2017 *)
  • PARI
    for(n=0,25, for(k=1,n, print1((k/(2*n-k))*sum(i=0,n-k, binomial(2*n-k,n-k-i)*binomial(2*n-k+i-1,2*n-k-1)), ", "))) \\ G. C. Greubel, Sep 05 2017

Formula

T(0, 0) = 1; T(n, k) = 0 if k<0 or if k>n; T(n, k) = Sum_{j, j>=0} T(n-1, k-1+j)*A006318(j).
Sum_{k, k>=0} T(n, k) = A108442(n+1).
T(n,k) = k/(2*n-k)*Sum_{i=0,n-k} binomial(2*n-k,n-k-i)*binomial(2*n-k+i-1,2*n-k-1), n >= k > 0. - Vladimir Kruchinin, Mar 16 2011

A108438 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and having abscissa of the first peak equal to k.

Original entry on oeis.org

1, 1, 4, 3, 2, 1, 24, 18, 13, 7, 3, 1, 172, 130, 96, 55, 28, 12, 4, 1, 1360, 1034, 772, 458, 249, 119, 50, 18, 5, 1, 11444, 8738, 6568, 3982, 2244, 1137, 526, 219, 80, 25, 6, 1, 100520, 76994, 58140, 35770, 20624, 10836, 5293, 2383, 981, 365, 119, 33, 7, 1
Offset: 1

Views

Author

Emeric Deutsch, Jun 04 2005

Keywords

Comments

Row n contains 2n terms. Row sums yield A027307. T(n,1)=A032349(n-1).

Examples

			T(2,3) = 2 because we have Uuddd and uUddd.
Triangle begins:
1,1;
4,3,2,1;
24,18,13,7,3,1;
172,130,96,55,28,12,4,1;
		

Crossrefs

Programs

  • Maple
    A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=1/(1-t^2*z*A-t*z*A^2)-1: Gserz:=simplify(series(G,z=0,10)): for n from 1 to 8 do P[n]:=sort(coeff(Gserz,z^n)) od: > for n from 1 to 8 do seq(coeff(P[n],t^k),k=1..2*n) od; # yields sequence in triangular form

Formula

G.f.: G = G(t,z) = 1/(1-t^2zA-tzA^2)-1, where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).

A137842 Number of paths from (0,0) if n is even, or from (2,1) if n is odd, to (3n,0) that stay in first quadrant (but may touch horizontal axis) and where each step is (2,1), (1,2) or (1,-1).

Original entry on oeis.org

1, 1, 2, 4, 10, 24, 66, 172, 498, 1360, 4066, 11444, 34970, 100520, 312066, 911068, 2862562, 8457504, 26824386, 80006116, 255680170, 768464312, 2471150402, 7474561164, 24161357010, 73473471344, 238552980386, 728745517972
Offset: 0

Views

Author

Paul Barry, Feb 13 2008

Keywords

Comments

Row sums of the inverse of the Riordan array (1/(1+x^2),x(1-x^2)/(1+x^2)).
a(n) is the maximum number of distinct sets that can be obtained as complete parenthesizations of “S_1 union S_2 intersect S_3 union S_4 intersect S_5 union ... S_{n+1}”, where the total of n union and intersection operations alternate, starting with a union, and S_1, S_2, ... , S_{n+1} are sets. - Alexander Burstein, Nov 22 2023

Crossrefs

Cf. A084078. [From R. J. Mathar, Feb 28 2009]

Formula

G.f.: (1+v^2)/(1-v), where v=2*sqrt(x^2+3)*sin(asin(x(x^2+18)/((x^2+3)^(3/2)))/3)/3-x/3; a(2n)=A027307(n); a(2n+1)=A032349(n+1).

A257532 Triangle, read by rows, T(n,k)=k/n*Sum_{i=0..n-k} C(2*n,n-k-i)*C(2*n+i-1,i).

Original entry on oeis.org

1, 4, 1, 24, 8, 1, 172, 64, 12, 1, 1360, 536, 120, 16, 1, 11444, 4672, 1156, 192, 20, 1, 100520, 42024, 11088, 2096, 280, 24, 1, 911068, 387456, 106908, 22016, 3420, 384, 28, 1, 8457504, 3643448, 1038984, 227408, 39120, 5192, 504, 32, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Apr 28 2015

Keywords

Examples

			1;
4, 1;
24, 8, 1;
172, 64, 12, 1;
1360, 536, 120, 16, 1;
		

Crossrefs

Cf. A027307. First column = A032349.

Programs

  • Maxima
    T(n,k):=(k*sum(binomial(2*n,n-k-i)*binomial(2*n+i-1,i),i,0,n-k))/n;

Formula

G.f.: 1/(1-x*B(x)^2*y)-1, where B(x) is g.f. of A027307.
G.f. satisfies A(x)=x*[(1+A(x))/(1-A(x))]^2.
Previous Showing 21-27 of 27 results.