cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A222728 Palindromic composite numbers starting with a digit 7.

Original entry on oeis.org

77, 707, 717, 737, 747, 767, 777, 7007, 7117, 7227, 7337, 7447, 7557, 7667, 7777, 7887, 7997, 70007, 70107, 70307, 70407, 70707, 70807, 70907, 71017, 71117, 71217, 71417, 71517, 71617, 71717, 71817, 72027, 72127, 72327, 72427, 72527, 72627, 72827, 72927, 73137
Offset: 1

Views

Author

Jaroslav Krizek, Mar 09 2013

Keywords

Comments

Subsequence of A032350 (palindromic nonprime numbers) and A002113 (palindromic numbers). Complement of A222727 (palindromic primes starting with a digit 7) with respect to A043042 (palindromic numbers starting with a digit 7).

Crossrefs

Programs

  • Mathematica
    Table[Select[Range[7*10^d,8*10^d-1],CompositeQ[#]&&PalindromeQ[#]&],{d,4}]//Flatten (* Harvey P. Dale, Nov 07 2021 *)

A222729 Palindromic composite numbers starting with a digit 9.

Original entry on oeis.org

9, 99, 909, 939, 949, 959, 969, 979, 989, 999, 9009, 9119, 9229, 9339, 9449, 9559, 9669, 9779, 9889, 9999, 90009, 90109, 90209, 90309, 90409, 90509, 90609, 90809, 90909, 91119, 91219, 91319, 91419, 91519, 91619, 91719, 91819, 91919, 92029, 92129, 92229, 92329
Offset: 1

Views

Author

Jaroslav Krizek, Mar 03 2013

Keywords

Comments

Subsequence of A032350 (palindromic nonprime numbers) and A002113 (palindromic numbers). Complement of A128375 (palindromic primes starting with a digit 9) with respect to A043044 (palindromic numbers starting with a digit 9).

Crossrefs

Programs

  • Mathematica
    Select[Range[100000],PalindromeQ[#]&&CompositeQ[#]&&IntegerDigits[#][[1]] == 9&] (* Harvey P. Dale, Oct 09 2021 *)

A046345 Sum of the prime factors of the palindromic composite numbers (counted with multiplicity).

Original entry on oeis.org

4, 5, 6, 6, 13, 14, 15, 16, 16, 18, 17, 17, 40, 22, 50, 30, 25, 103, 57, 42, 35, 24, 17, 133, 25, 52, 77, 104, 36, 43, 21, 25, 134, 105, 31, 59, 40, 44, 229, 37, 84, 26, 34, 106, 108, 20, 112, 114, 45, 118, 33, 24, 29, 106, 24, 315, 60, 38, 49, 45, 30, 23, 38, 108, 242, 78
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			a(60)=45 because 666 = 2 * 3 * 3 * 37 and 45 = 2 + 3 + 3 + 37.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[If[!PrimeQ[n]&&Reverse[x=IntegerDigits[n]]==x,AppendTo[t,Total[Times@@@FactorInteger[n]]]],{n,4,740}]; t (* Jayanta Basu, Jun 04 2013 *)

Formula

a(n) = A001414(A032350(1+n)). - R. J. Mathar, Sep 09 2015

Extensions

Offset set to 1. - R. J. Mathar, Sep 09 2015

A076609 Palindromic numbers with prime middle digit.

Original entry on oeis.org

2, 3, 5, 7, 121, 131, 151, 171, 222, 232, 252, 272, 323, 333, 353, 373, 424, 434, 454, 474, 525, 535, 555, 575, 626, 636, 656, 676, 727, 737, 757, 777, 828, 838, 858, 878, 929, 939, 959, 979, 10201, 10301, 10501, 10701, 11211, 11311, 11511, 11711, 12221
Offset: 1

Views

Author

Jani Melik, Oct 21 2002

Keywords

Comments

There are no such with an even number of digits.

Examples

			a(12)=272=2^4*17 is palindromic number and its middle digit 7 is prime, a(13)=323=17*19 is palindromic number and its middle digit 2 is prime, a(14)=333=3^2*37 is palindromic number and its middle digit 3 is prime.
		

Crossrefs

Programs

  • Maple
    ts_numprapal := proc(n) local ad,adr,midigit; ad := convert(n,base,10): adr := ListTools[Reverse](ad): if nops(ad) mod 2 = 0 then return 1; fi; midigit := op( (nops(ad)+1)/2,ad ): if (isprime( midigit )='true' and adr=ad) then return 0; else return 1; fi end: ts_num_pal := proc(i) if ts_numprapal(i) = 0 then return (i) fi end: anumpal := [seq(ts_num_pal(i), i=1..50000)]: anumpal;
  • Mathematica
    pnpmdQ[n_]:=Module[{idn=IntegerDigits[n],len=IntegerLength[n]},OddQ[len] && PalindromeQ[n]&&PrimeQ[idn[[(len+1)/2]]]]; Select[Range[15000],pnpmdQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 08 2017 *)

A031880 Lucky numbers that are both palindromic and nonprime.

Original entry on oeis.org

1, 9, 33, 99, 111, 141, 171, 303, 393, 535, 717, 777, 979, 1441, 1771, 3003, 3223, 3663, 5335, 7447, 9009, 9339, 9999, 11011, 11811, 11911, 12121, 12321, 12621, 13531, 14041, 14541, 14841, 17671, 18381, 18681, 19791, 30303, 31713, 32223
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A000959 and A032350.

Extensions

Name corrected by Amiram Eldar, Nov 15 2019

A227947 Each term is a palindrome such that the sum of its proper divisors is a palindrome > 1.

Original entry on oeis.org

4, 6, 8, 9, 333, 646, 656, 979, 1001, 3553, 10801, 11111, 18581, 31713, 34943, 48484, 57375, 95259, 99099, 158851, 262262, 569965, 1173711, 1216121, 1399931, 1439341, 1502051, 1925291, 3203023, 3436343, 3659563, 3662663, 3803083, 3888883, 5185815, 5352535, 5893985, 5990995, 6902096, 9341439, 9452549
Offset: 1

Views

Author

Derek Orr, Oct 03 2013

Keywords

Comments

All terms are composite numbers. - Chai Wah Wu, Dec 23 2015

Examples

			4 has proper divisors 1 and 2. 1 + 2 = 3 is also a palindrome. So 4 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; fQ[n_] := Block[{s = DivisorSigma[1, n] - n}, palQ@ s && s > 1]; Select[
    Select[Range@ 1000000, palQ], fQ] (* Michael De Vlieger, Apr 06 2015 *)
    spdQ[n_]:=Module[{spd=DivisorSigma[1,n]-n},n==IntegerReverse[n] && spd>1 && spd==IntegerReverse[spd]]; Select[Range[10^7],spdQ] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Jan 03 2016 *)
  • PARI
    pal(n)=d=digits(n);Vecrev(d)==d
    for(n=1,10^6,s=sigma(n)-n;if(pal(n)&&pal(s)&&s>1,print1(n,", "))) \\ Derek Orr, Apr 05 2015
  • Python
    from sympy import divisors
    def pal(n):
      r = ''
      for i in str(n):
        r = i + r
      return r == str(n)
    {print(n,end=', ') for n in range(1,10**7) if pal(n) and pal(sum(divisors(n))-n) and len(divisors(n)) > 2}
    ## Simplified by Derek Orr, Apr 05 2015
    

Extensions

Initial terms 0 and 1 removed and more terms added by Derek Orr, Apr 05 2015
Definition edited by Derek Orr, Apr 05 2015
Definition edited by Harvey P. Dale, Jan 03 2016
Previous Showing 11-16 of 16 results.