cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 62 results. Next

A356281 a(n) = Sum_{k=0..n} binomial(2*n, n-k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).

Original entry on oeis.org

1, 3, 11, 43, 172, 695, 2823, 11501, 46940, 191791, 784148, 3207196, 13119733, 53670793, 219545353, 897957702, 3672093558, 15013596535, 61370565546, 250803861369, 1024716136043, 4185683293934, 17093143284723, 69786349712519, 284847779542644, 1162385753008079
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsQ[k]*Binomial[2*n, n-k], {k, 0, n}], {n, 0, 30}]
    nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k]*((1-2*x-Sqrt[1-4*x])/(2*x))^k / Sqrt[1-4*x], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(2*n - 1/2) * exp(3^(1/3) * Pi^(4/3) * n^(1/3) / 2^(8/3)) / sqrt(3*Pi*n).

A360168 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,n-3*k).

Original entry on oeis.org

1, 2, 6, 21, 78, 297, 1145, 4447, 17358, 68001, 267141, 1051767, 4148281, 16385111, 64797543, 256515731, 1016368078, 4030114641, 15990813773, 63485616391, 252175202373, 1002136689071, 3984080489263, 15844839393411, 63036297959993, 250855287692647
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A360168 := proc(n)
        add(binomial(2*n,n-3*k),k=0..n/3) ;
    end proc:
    seq(A360168(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • Mathematica
    a[n_] := Sum[Binomial[2*n, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^6)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)^6) ), where c(x) is the g.f. of A000108.
D-finite with recurrence n*a(n) +2*(-4*n+3)*a(n-1) +8*(2*n-3)*a(n-2) +3*(-n+2)=0. - R. J. Mathar, Mar 12 2023
a(n) = [x^n] 1/(((1-x)^3-x^3) * (1-x)^(n-2)). - Seiichi Manyama, Apr 10 2024

A343943 Number of distinct possible alternating sums of permutations of the multiset of prime factors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 19 2021

Keywords

Comments

First differs from A096825 at a(525) = 3, A096825(525) = 4.
First differs from A345926 at a(90) = 4, A345926(90) = 3.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime factors is also the reverse-alternating sum of reversed prime factors.
Also the number of distinct "sums of prime factors" of divisors d|n such that bigomega(d) = bigomega(n)/2 rounded up.

Examples

			The divisors of 525 with 2 prime factors are: 15, 21, 25, 35, with prime factors {3,5}, {3,7}, {5,5}, {5,7}, with distinct sums {8,10,12}, so a(525) = 3.
		

Crossrefs

The half-length submultisets are counted by A114921.
Including all multisets of prime factors gives A305611(n) + 1.
The strict rounded version appears to be counted by A342343.
The version for prime indices instead of prime factors is A345926.
A000005 counts divisors, which add up to A000203.
A001414 adds up prime factors, row sums of A027746.
A056239 adds up prime indices, row sums of A112798.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A276024 and A299701 count positive subset-sums of partitions.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A334968 counts subsequence-sums of standard compositions.

Programs

  • Mathematica
    prifac[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[Length[Union[Total/@Subsets[prifac[n],{Ceiling[PrimeOmega[n]/2]}]]],{n,100}]
  • Python
    from sympy import factorint
    from sympy.utilities.iterables import multiset_combinations
    def A343943(n):
        fs = factorint(n)
        return len(set(sum(d) for d in multiset_combinations(fs,(sum(fs.values())+1)//2))) # Chai Wah Wu, Aug 23 2021

A356269 a(n) = Sum_{k=0..n} binomial(2*k, k) * p(k), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 3, 15, 75, 425, 2189, 12353, 63833, 346973, 1805573, 9565325, 49069517, 257289529, 1307750129, 6723491129, 34024174649, 172873744739, 865954792079, 4359881882579, 21679061144579, 108108834714719, 534409071271199, 2642716232918639, 12975671796056639, 63765647596939139
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k] * PartitionsP[k], {k, 0, n}], {n, 0, 30}]

Formula

a(n) ~ binomial(2*n,n) * p(n) * 4/3.
a(n) ~ 2^(2*n) * exp(Pi*sqrt(2*n/3)) / (3^(3/2) * sqrt(Pi) * n^(3/2)).

A356270 a(n) = Sum_{k=0..n} binomial(2*k, k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).

Original entry on oeis.org

1, 3, 9, 49, 189, 945, 4641, 21801, 99021, 487981, 2335541, 10800725, 51363065, 238573865, 1121139065, 5309312105, 24543884585, 113220920945, 530677144745, 2439321389945, 11261499234425, 52169097691865, 239433905462945, 1095710701133345, 5029918350471545
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]

Formula

a(n) ~ binomial(2*n,n) * q(n) * 4/3.
a(n) ~ 2^(2*n) * exp(Pi*sqrt(n/3)) / (3^(5/4) * sqrt(Pi) * n^(5/4)).

A360144 a(n) = Sum_{k=0..n} binomial(2*n+3*k,n-k).

Original entry on oeis.org

1, 3, 14, 69, 344, 1721, 8621, 43206, 216570, 1085574, 5441294, 27272044, 136679882, 684959516, 3432431414, 17199626276, 86182614207, 431824008713, 2163629549132, 10840520569183, 54313805146415, 272122594209738, 1363372115057995, 6830627007245263
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2023

Keywords

Crossrefs

Programs

  • Maple
    A360144 := proc(n)
        add(binomial(2*n+3*k,n-k),k=0..n) ;
    end proc:
    seq(A360144(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n, binomial(2*n+3*k, n-k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x*(2/(1+sqrt(1-4*x)))^5)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x * c(x)^5) ), where c(x) is the g.f. of A000108.
D-finite with recurrence +n*(697*n-7543)*a(n) +(697*n^2+23641*n-3800)*a(n-1) +2*(-32006*n^2+199879*n-255053)*a(n-2) +(283953*n^2-2288641*n+4072186)*a(n-3) +2*(-186566*n^2+1774989*n-4013515)*a(n-4) +(146221*n^2-1648033*n+4472550)*a(n-5) +(38223*n^2-307771*n+532906)*a(n-6) -10*(1511*n-6875)*(2*n-13)*a(n-7)=0. - R. J. Mathar, Mar 12 2023
a(n) = binomial(2*n, n)*hypergeom([1, (1+2*n)/3, 2*(1+n)/3, 1+2*n/3, -n], [(1+n)/4, (2+n)/4, (3+n)/4, 1+n/4], -3^3/4^4). - Stefano Spezia, Jun 17 2025

A386960 a(n) = Sum_{k=0..n} 8^k * binomial(2*n,n-k).

Original entry on oeis.org

1, 10, 102, 1036, 10502, 106380, 1077276, 10908096, 110447046, 1118286172, 11322685172, 114642332232, 1160754172316, 11752638152824, 118995469654968, 1204829162684136, 12198895398209862, 123513816397462524, 1250577392936568708, 12662096110945862856, 128203723152486704052
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[8^k * Binomial(2*n, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 13 2025
  • Mathematica
    Table[Sum[8^k*Binomial[2*n,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 13 2025 *)
  • PARI
    a(n) = sum(k=0, n, 8^k*binomial(2*n, n-k));
    

Formula

a(n) = [x^n] 1/((1-9*x) * (1-x)^n).
a(n) = Sum_{k=0..n} 9^k * (-8)^(n-k) * binomial(2*n,k) * binomial(2*n-k-1,n-k).
a(n) = Sum_{k=0..n} 9^k * binomial(2*n-k-1,n-k).
G.f.: (1+sqrt(1-4*x))/( sqrt(1-4*x) * (9*sqrt(1-4*x)-7) ).

A113955 Riordan array (1/((1-4x)c(x)),xc(x)/sqrt(1-4x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 3, 1, 11, 6, 1, 42, 30, 9, 1, 163, 140, 58, 12, 1, 638, 630, 325, 95, 15, 1, 2510, 2772, 1686, 624, 141, 18, 1, 9908, 12012, 8330, 3682, 1064, 196, 21, 1, 39203, 51480, 39796, 20264, 7050, 1672, 260, 24, 1, 155382, 218790, 185517, 106203, 42849, 12303, 2475
Offset: 0

Views

Author

Paul Barry, Nov 09 2005

Keywords

Comments

Columns include A032443,A002457,A018218,A038836. Row sums are A100192. Diagonal sums are A113956.

Examples

			Triangle begins
1;
3, 1;
11, 6, 1;
42, 30, 9, 1;
163, 140, 58, 12, 1;
638, 630, 325, 95, 15, 1;
		

Formula

Riordan array ((1/(1-4x)+1/sqrt(1-4x))/2, (2x/((1-4x)+sqrt(1-4x)))); Number triangle T(n, k)=sum{j=0..n, C(j, j-k)C(2n, n-j)}.
T(n,k)=sum{j=0..n, C(2n,j)C(n-j,k)}; - Paul Barry, Apr 03 2006

A124834 Triangle, read by rows, where the g.f. of column k, C_k(x), is equal to the product: C_k(x) = Product_{k=0..n} 1/(1 - binomial(n,k)*x).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 11, 8, 1, 1, 5, 26, 42, 16, 1, 1, 6, 57, 184, 163, 32, 1, 1, 7, 120, 731, 1358, 638, 64, 1, 1, 8, 247, 2736, 10121, 10244, 2510, 128, 1, 1, 9, 502, 9844, 70436, 145475, 78320, 9908, 256, 1, 1, 10, 1013, 34448, 468735, 1911956, 2141835
Offset: 0

Views

Author

Paul D. Hanna, Nov 09 2006

Keywords

Examples

			Column g.f.s begin:
C_0(x) = 1/(1-x);
C_1(x) = 1/((1-x)(1-x));
C_2(x) = 1/((1-x)(1-2x)(1-x));
C_3(x) = 1/((1-x)(1-3x)(1-3x)(1-x));
C_4(x) = 1/((1-x)(1-4x)(1-6x)(1-4x)(1-x)); ...
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 11, 8, 1;
1, 5, 26, 42, 16, 1;
1, 6, 57, 184, 163, 32, 1;
1, 7, 120, 731, 1358, 638, 64, 1;
1, 8, 247, 2736, 10121, 10244, 2510, 128, 1;
1, 9, 502, 9844, 70436, 145475, 78320, 9908, 256, 1;
1, 10, 1013, 34448, 468735, 1911956, 2141835, 604160, 39203, 512, 1; ...
		

Crossrefs

Cf. A124835 (row sums), A124836 (central terms).

Programs

  • PARI
    {T(n,k)=polcoeff(1/prod(j=0,k,1-binomial(k,j)*x +x*O(x^n)),n-k)}

Formula

T(n+1,n) = 2^n. T(n+2,n) = A032443(n) = Sum_{i=0..n} binomial(2*n,i).

A203578 Exponential (or binomial) half-convolution of A000045 (Fibonacci) with itself.

Original entry on oeis.org

0, 0, 2, 3, 14, 35, 155, 371, 1518, 3891, 15745, 40755, 161459, 426803, 1671175, 4469555, 17301630, 46805811, 179569163, 490156851, 1865624365, 5132989235, 19404565567, 53753361203, 201986220339, 562912506675, 2103942223775, 5894896300851, 21927151270703, 61732155503411
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2012

Keywords

Comments

For the definition of the exponential (also known as binomial) half-convolution of a sequence with itself see a comment on A203576 where also the rule for the e.g.f. is given.

Crossrefs

Cf. A000045, 2*A014335 (exponential convolution), A032443.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Fibonacci[k]Fibonacci[n-k],{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, Mar 04 2013 *)

Formula

a(n) = sum(binomial(n,k)*F(k)*F(n-k),k=0..floor(n/2)), n>=0, with F(n)=A000045(n).
E.g.f.: (f(x)^2 + Fs2(x^2))/2, with the e.g.f. f(x) of A000045 and the o.g.f. Fs2(x):=sum((F(n)/n!)^2*x^n,n=0..infty) of the scaled squares. f(x)^2 = 2*exp(x)*(cosh((2*phi-1)*x)-1)/5 (see A000045 for f(x)) and Fs2(x^2) = (BesselI(0,2*phi*x) + BesselI(0,2*(phi-1)*x) - 2*BesselI(0,2*i*x))/5, with the golden section phi:=(1+sqrt(5))/2, the complex unit i, and for BesselI see Abramowitz-Stegun (reference and link given in A008277, p. 375, eq. 9.6.10). BesselI(0,2*sqrt(y)) = hypergeom([],[1],y) is the e.g.f. of the sequence {1/n!}.
Bisection:
a(2*k) = (A032443(k)*L(2*k) - (1 + (-1)^k*binomial(2*k,k)))/5 and a(2*k) = (2^(2*k)*L(2*k+1) - 1)/5, k>=0, with the Lucas numbers L(n)=A000032(n), and A032443(k)=(2^(2*k) + binomial(2*k,k))/2. - Wolfdieter Lang, Jan 16 2012.
Previous Showing 41-50 of 62 results. Next