cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A284922 Numbers with digits 2 and 8 only.

Original entry on oeis.org

2, 8, 22, 28, 82, 88, 222, 228, 282, 288, 822, 828, 882, 888, 2222, 2228, 2282, 2288, 2822, 2828, 2882, 2888, 8222, 8228, 8282, 8288, 8822, 8828, 8882, 8888, 22222, 22228, 22282, 22288, 22822, 22828, 22882, 22888, 28222, 28228, 28282, 28288, 28822, 28828
Offset: 1

Views

Author

Jaroslav Krizek, Apr 05 2017

Keywords

Comments

All terms are even.

Crossrefs

Cf. Numbers with digits 2 and k only for k = 0 - 1 and 3 - 9: A169965 (k = 0), A007931 (k = 1), A032810 (k = 3), A284920 (k = 4), A072961 (k = 5), A284632 (k = 6), A284921 (k = 7), this sequence (k = 8), A284923 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {2, 8}]
  • Mathematica
    Flatten@ Array[FromDigits /@ Tuples[{2, 8}, #] &, 5] (* Michael De Vlieger, Apr 06 2017 *)

Formula

a(n) = 2 * A032822(n).

A284923 Numbers with digits 2 and 9 only.

Original entry on oeis.org

2, 9, 22, 29, 92, 99, 222, 229, 292, 299, 922, 929, 992, 999, 2222, 2229, 2292, 2299, 2922, 2929, 2992, 2999, 9222, 9229, 9292, 9299, 9922, 9929, 9992, 9999, 22222, 22229, 22292, 22299, 22922, 22929, 22992, 22999, 29222, 29229, 29292, 29299, 29922, 29929
Offset: 1

Views

Author

Jaroslav Krizek, Apr 06 2017

Keywords

Crossrefs

Prime terms are in A020460.
Numbers with digits 2 and k only for k = 0 - 1 and 3 - 9: A169965 (k = 0), A007931 (k = 1), A032810 (k = 3), A284920 (k = 4), A072961 (k = 5), A284632 (k = 6), A284921 (k = 7), A284922 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {2, 9}]
  • Mathematica
    Select[Range[30000],SubsetQ[{2,9},Sort[DeleteDuplicates[IntegerDigits[#]]]] &] (* Stefano Spezia, Aug 06 2025 *)

A213971 List of primitive words over the alphabet {2,3}.

Original entry on oeis.org

2, 3, 23, 32, 223, 232, 233, 322, 323, 332, 2223, 2232, 2233, 2322, 2332, 2333, 3222, 3223, 3233, 3322, 3323, 3332, 22223, 22232, 22233, 22322, 22323, 22332, 22333, 23222, 23223, 23232, 23233, 23322, 23323, 23332, 23333, 32222, 32223, 32232, 32233, 32322, 32323, 32332, 32333, 33222, 33223, 33232, 33233, 33322, 33323, 33332
Offset: 1

Views

Author

N. J. A. Sloane, Jun 30 2012

Keywords

Comments

A word w is primitive if it cannot be written as u^k with k>1; otherwise it is imprimitive.
The {0,1} version of this sequence is
0, 1, 01, 10, 001, 010, 011, 100, 101, 110, 0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1011, 1100, 1101, 1110, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001, 01010, 01011, 01100, 01101, 01110, 01111, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, ...,
but this cannot be included as a sequence in the OEIS since it contains nonzero "numbers" beginning with 0.
The Lyndon words over {2,3} are the intersection of this sequence with A239016. - M. F. Hasler, Mar 10 2014
This sequence results from A213970 by replacing all digits 1 by 2, and from A213969 by replacing all digits 2 by 3 and digits 1 by 2. - M. F. Hasler, Mar 10 2014

References

  • A. de Luca and S. Varricchio, Finiteness and Regularity in Semigroups and Formal Languages, Monographs in Theoretical Computer Science, Springer-Verlag, Berlin, 1999. See p. 10.

Crossrefs

Programs

  • PARI
    for(n=1, 5, p=vector(n, i, 10^(n-i))~; forvec(d=vector(n, i, [2, 3]), is_A239017(m=d*p)&&print1(m", "))) \\ M. F. Hasler, Mar 10 2014

Formula

A213971 = A032810 intersect A239017. - M. F. Hasler, Mar 10 2014

A176892 Decimal representation of the reverted binary representation of n followed by digits substitution 0->2, 1->3.

Original entry on oeis.org

2, 3, 23, 33, 223, 323, 233, 333, 2223, 3223, 2323, 3323, 2233, 3233, 2333, 3333, 22223, 32223, 23223, 33223, 22323, 32323, 23323, 33323, 22233, 32233, 23233, 33233, 22333, 32333, 23333, 33333, 222223, 322223, 232223, 332223, 223223
Offset: 0

Views

Author

Roger L. Bagula, Apr 28 2010

Keywords

Comments

Revert the digits of A007088(n), preserving zeros, and increase each digit by 2 (add the repunit A002276 with the same number of digits).

Examples

			n=10 is A007088(10)= 1010 in binary, reverted 0101. Adding 2222 generates a(10)=2323.
		

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr); import Data.Tuple (swap)
    a176892 0 = 2a176892 n = foldl (\v d -> 10 * v + d + 2) 0 $
       unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2) n
    -- Reinhard Zumkeller, Jul 16 2015
  • Mathematica
    Table[Sum[Table[((IntegerDigits[ n, 2]) /. 0 -> 2) /. 1 -> 3, {n, 0, 50}][[n]][[m]]*10^(m - 1),
    {m, 1, Length[Table[((IntegerDigits[n, 2]) /. 0 -> 2) /. 1 -> 3, {n, 0, 50}][[n]]]}], {n, 1, 51}]

A284963 Numbers with digits 3 and 8 only.

Original entry on oeis.org

3, 8, 33, 38, 83, 88, 333, 338, 383, 388, 833, 838, 883, 888, 3333, 3338, 3383, 3388, 3833, 3838, 3883, 3888, 8333, 8338, 8383, 8388, 8833, 8838, 8883, 8888, 33333, 33338, 33383, 33388, 33833, 33838, 33883, 33888, 38333, 38338, 38383, 38388, 38833, 38838
Offset: 1

Views

Author

Jaroslav Krizek, Apr 06 2017

Keywords

Crossrefs

Prime terms are in A020464.
Numbers with digits 3 and k only for k = 0 - 2 and 4 - 9: A169966 (k = 0), A032917 (k = 1), A032810 (k = 2), A032834 (k = 4), A284379 (k = 5), A284633 (k = 6), A143967 (k = 7), this sequence (k = 8), A284964 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {3, 8}]
  • Mathematica
    Table[FromDigits/@Tuples[{3,8},n],{n,5}]//Flatten (* Harvey P. Dale, Mar 23 2021 *)

A284964 Numbers with digits 3 and 9 only.

Original entry on oeis.org

3, 9, 33, 39, 93, 99, 333, 339, 393, 399, 933, 939, 993, 999, 3333, 3339, 3393, 3399, 3933, 3939, 3993, 3999, 9333, 9339, 9393, 9399, 9933, 9939, 9993, 9999, 33333, 33339, 33393, 33399, 33933, 33939, 33993, 33999, 39333, 39339, 39393, 39399, 39933, 39939
Offset: 1

Views

Author

Jaroslav Krizek, Apr 06 2017

Keywords

Comments

All terms > 3 are composite.

Crossrefs

Cf. Numbers with digits 3 and k only for k = 0 - 2 and 4 - 9: A169966 (k = 0), A032917 (k = 1), A032810 (k = 2), A032834 (k = 4), A284379 (k = 5), A284633 (k = 6), A143967 (k = 7), A284963 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {3, 9}]
  • Mathematica
    Table[FromDigits/@Tuples[{3,9},n],{n,5}]//Flatten (* Harvey P. Dale, Sep 20 2022 *)

Formula

a(n) = 3 * A032917(n).

A166713 Alliterative-digit numbers: Positive integers n such that the English names of the decimal digits of n begin with the same letter; ignore single-digit numbers.

Original entry on oeis.org

11, 22, 23, 32, 33, 44, 45, 54, 55, 66, 67, 76, 77, 88, 99, 111, 222, 223, 232, 233, 322, 323, 332, 333, 444, 445, 454, 455, 544, 545, 554, 555, 666, 667, 676, 677, 766, 767, 776, 777, 888, 999, 1111, 2222, 2223, 2232, 2233, 2322, 2323, 2332, 2333, 3222, 3223
Offset: 1

Views

Author

Rick L. Shepherd, Oct 19 2009

Keywords

Comments

The multi-digit repdigits (A014181) are a subsequence. No term contains the digit 0 (zero). All terms containing digits 1 (one), 8 (eight), or 9 (nine) are also terms of A014181. Any term not mentioned above is a string of 2's (twos) and 3's (threes) only (a multi-digit term of A032810), 4's (fours) and 5's (fives) only, or 6's (sixes) and 7's (sevens) only.

Examples

			454 is a term as digits "four", "five", "four" each begin with the letter "f".
		

Crossrefs

Previous Showing 21-27 of 27 results.