A136028 Expansion of (phi(q) * phi(q^2))^3 in powers of q where phi() is a Ramanujan theta function.
1, 6, 18, 44, 90, 144, 212, 288, 330, 418, 528, 588, 836, 1008, 1056, 1440, 1386, 1356, 1894, 1644, 2064, 2880, 2484, 3168, 3428, 2838, 3696, 3864, 4128, 5040, 5280, 5760, 5418, 5656, 5988, 5376, 7678, 8208, 7572, 10080, 8208, 7788, 10560, 8652, 10404, 13104
Offset: 0
Keywords
Examples
G.f. = 1 + 6*q + 18*q^2 + 44*q^3 + 90*q^4 + 144*q^5 + 212*q^6 + 288*q^7 + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Magma
A := Basis( ModularForms( Gamma1(8), 3), 46); A[1] + 6*A[2] + 18*A[3] + 44*A[4] + 90*A[5] + 144*A[6] + 212*A[7]; /* Michael Somos, Oct 14 2015 */
-
Mathematica
nmax=60; CoefficientList[Series[Product[((1-x^k)^2 * (1+x^k)^4 * (1+x^(2*k)) / (1+x^(4*k))^2)^3,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *) a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2])^3, {q, 0, n}]; (* Michael Somos, Oct 14 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^2 + A) * eta(x^4 + A))^3 / (eta(x + A) * eta(x^8 + A))^2)^3, n))};
Formula
Expansion of (eta(q^2) * eta(q^4))^9 / (eta(q) * eta(q^8))^6 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1/(8 t)) = 2^(9/2) (t/i)^3 f(t) where q = exp(2 Pi i t).
G.f.: (Product_{k>0} (1 - x^k)^2 * (1 + x^k)^4 * (1 + x^(2*k)) / (1 + x^(4*k))^2)^3.
a(n) = A028578(4*n). - Michael Somos, Oct 14 2015
Comments