cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A263472 Total number of positive integers < 10^n with multiplicative digital root value 4.

Original entry on oeis.org

1, 10, 65, 279, 894, 2345, 6174, 66354, 1005399, 9737884, 66699415, 356586629, 1585685916, 6342292785, 30560724590, 264486626166, 2926013859615, 28611339267816, 232062904906327, 1588966488941437, 9421788721876388, 49444241961339027, 233673191793220620
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

Partial sums of A263478.

Crossrefs

Programs

  • Mathematica
    lim = 6; t = Select[Range[1, 10^lim - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 4 &]; Count[t, n_ /; n <= 10^#] & /@ Range@ lim (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=1, 10^n - 1, if(t(i) == 4, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263470(n) + A000027(n) + A263471(n) + A000217(n) + a(n) + A263473(n) + A263474(n) + A000217(n) + A263475(n) + A000292(n) = A002283(n).

Extensions

a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015

A263478 Total number of n-digit positive integers with multiplicative digital root value 4.

Original entry on oeis.org

1, 9, 55, 214, 615, 1451, 3829, 60180, 939045, 8732485, 56961531, 289887214, 1229099287, 4756606869, 24218431805, 233925901576, 2661527233449, 25685325408201, 203451565638511, 1356903584035110, 7832822232934951, 40022453239462639, 184228949831881593
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263472.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 4 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 4, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + a(n) + A263479(n) + A263480(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015

A277061 Numbers with multiplicative digital root > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 57, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 97, 98, 99, 111, 112, 113, 114, 115
Offset: 1

Views

Author

J. Lowell, Sep 26 2016

Keywords

Comments

Question: when will numbers not in this sequence outnumber numbers in this sequence? Up to n = 1249, there are 524 terms, so 525 terms not in this sequence. Up to n = 1522, there are n/2 terms. No n > 1522 has that property. Up to 10^10, only about 1.46% of numbers are a term.
To find how many terms there are up to 10^n, see if A009994(i) is for 2 <= i <= binomial(n + 9, 9). If it is then that adds A047726(A009994(i)) to the total (we don't have to worry about digits 0 in A009994(i) as there aren't any for the specified i). One may put further constraints on i. For example, A009994(i) can't contain an even digit and a 5 in the same number. - David A. Corneth, Sep 27 2016

Examples

			25 is not in this sequence because 2*5 = 10 and 1*0 = 0.
		

Crossrefs

Cf. A031347, A034048 (complement).
Cf. A028843 (a subsequence).
Union of A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 1-9).
Cf. A052382 (a supersequence).

Programs

  • Mathematica
    Select[Range@ 112, FixedPoint[Times @@ IntegerDigits@ # &, #] > 0 &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    is(n) = n=digits(n); while(#n>1,n=digits(prod(i=1,#n,n[i]))); #n>0 \\ David A. Corneth, Sep 27 2016

Extensions

More terms from Michael De Vlieger, Sep 26 2016

A199987 Numbers with digital product = 4.

Original entry on oeis.org

4, 14, 22, 41, 114, 122, 141, 212, 221, 411, 1114, 1122, 1141, 1212, 1221, 1411, 2112, 2121, 2211, 4111, 11114, 11122, 11141, 11212, 11221, 11411, 12112, 12121, 12211, 14111, 21112, 21121, 21211, 22111, 41111, 111114, 111122, 111141, 111212, 111221, 111411
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Subsequence of A034051.

Programs

  • Maple
    f:= proc(d) local b,i,t;
       b:= (10^d-1)/9;
       op(sort([seq(b+3*10^i,i=0..d-1),
        seq(b+10^t[1]+10^t[2],t=combinat:-choose([$0..d-1],2))]))
    end proc:
    seq(f(d),d=1..6); # Robert Israel, Jan 13 2021
  • Mathematica
    Select[Range[200000], Times @@ IntegerDigits[#] == 4 &] (* T. D. Noe, Nov 16 2011 *)

A117678 Squares for which the multiplicative digital root is also a square.

Original entry on oeis.org

0, 1, 4, 9, 25, 100, 169, 196, 225, 256, 400, 529, 576, 625, 676, 900, 961, 1024, 1089, 1156, 1225, 1296, 1521, 1600, 2025, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3481, 3600, 3844, 3969, 4096, 4225, 4356, 4489, 4900, 5041, 5184, 5329
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 12 2006

Keywords

Comments

From Robert Israel, Oct 22 2015: (Start)
1, 9, and squares in A034048 and A034051.
Are there infinitely many squares in A034051? (End)

Crossrefs

Programs

  • Maple
    A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A117678 := proc(n) option remember: local k, m: if(n=1)then return 0:fi: for k from procname(n-1)+1 do m:=k^2: while(length(m)>1)do m:=A007954(m): od: if(m in {0,1,4,9})then return k: fi: od: end: seq(A117678(n)^2, n=1..47); # Nathaniel Johnston, May 05 2011
  • Mathematica
    Select[Range[0, 73]^2, IntegerQ@ Sqrt[FixedPoint[Times @@ IntegerDigits@ # &, #] &@ #] &] (* Michael De Vlieger, Oct 22 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    for(n=0, 100, if(issquare(t(n^2)), print1(n^2, ", "))); \\ Altug Alkan, Oct 22 2015

Extensions

Offset and some terms corrected by Nathaniel Johnston, May 05 2011

A199983 Primes whose multiplicative digital root is 4.

Original entry on oeis.org

41, 89, 127, 139, 193, 271, 277, 379, 383, 397, 463, 643, 677, 727, 739, 937, 1193, 1217, 1249, 1277, 1319, 1429, 1721, 1913, 1931, 1973, 2377, 2711, 3119, 3191, 3313, 3331, 3373, 3461, 3719, 3727, 3733, 3911, 3917, 4111, 4129, 4219, 6143, 7121, 7127, 7193
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Complement of A199984 with respect to A034051.
Can this sequence be proved to be infinite? [Charles R Greathouse IV, Nov 13 2011]

Examples

			Prime 139 is in sequence because 1*3*9=27, 2*7=14, 1*4=4.
		

Crossrefs

Cf. A199984 (composite numbers whose multiplicative digital root is 4).
Cf. A034051 (numbers whose multiplicative digital root is 4).

Programs

  • Mathematica
    t = {}; n = 0; While[Length[t] < 100, n = NextPrime[n]; s = n; While[s >= 10, s = Times @@ IntegerDigits[s]]; If[s == 4, AppendTo[t, n]]]; t (* T. D. Noe, Nov 16 2011 *)

A199984 Composite numbers whose multiplicative digital root is 4.

Original entry on oeis.org

4, 14, 22, 27, 39, 72, 93, 98, 114, 122, 141, 172, 189, 198, 212, 217, 221, 249, 266, 294, 319, 333, 338, 346, 364, 391, 411, 429, 436, 492, 626, 634, 662, 712, 721, 767, 772, 776, 793, 819, 833, 891, 913, 918, 924, 931, 942, 973, 981, 1114, 1122, 1127, 1139
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Complement of A199983 with respect to A034051.

Examples

			Number 172 is in sequence because 1*7*2=14, 1*4=4.
		

Crossrefs

Cf. A199983 (primes whose multiplicative digital root is 4).
Cf. A034051 (numbers whose multiplicative digital root is 4).

Programs

  • Mathematica
    cn4Q[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]==4; Select[Select[ Range[ 1200],CompositeQ],cn4Q] (* Harvey P. Dale, Apr 28 2018 *)
Previous Showing 11-17 of 17 results.