cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A263474 Total number of positive integers < 10^n with multiplicative digital root value 6.

Original entry on oeis.org

1, 14, 155, 1172, 6843, 43538, 318457, 2223803, 14185700, 84670477, 477808607, 2577052118, 13759255632, 75251167843, 418157757456, 2267313716636, 11616142299625, 55909713312571, 257522103127082, 1182251998919171, 5791219719115580, 32715779086392723
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

Partial sums of A263480.

Crossrefs

Programs

  • Mathematica
    lim = 6; t = Select[Range[1, 10^lim - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 6 &]; Count[t, n_ /; n <= 10^#] & /@ Range@ lim (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=1, 10^n - 1, if(t(i) == 6, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263470(n) + A000027(n) + A263471(n) + A000217(n) + A263472(n) + A263473(n) + a(n) + A000217(n) + A263475(n) + A000292(n) = A002283(n).

Extensions

a(9)-a(22) from Hiroaki Yamanouchi, Oct 25 2015

A263480 Total number of n-digit positive integers with multiplicative digital root value 6.

Original entry on oeis.org

1, 13, 141, 1017, 5671, 36695, 274919, 1905346, 11961897, 70484777, 393138130, 2099243511, 11182203514, 61491912211, 342906589613, 1849155959180, 9348828582989, 44293571012946, 201612389814511, 924729895792089, 4608967720196409, 26924559367277143
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263474.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 6 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 6, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + A263478(n) + A263479(n) + a(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(22) from Hiroaki Yamanouchi, Oct 25 2015

A277061 Numbers with multiplicative digital root > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 57, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 97, 98, 99, 111, 112, 113, 114, 115
Offset: 1

Views

Author

J. Lowell, Sep 26 2016

Keywords

Comments

Question: when will numbers not in this sequence outnumber numbers in this sequence? Up to n = 1249, there are 524 terms, so 525 terms not in this sequence. Up to n = 1522, there are n/2 terms. No n > 1522 has that property. Up to 10^10, only about 1.46% of numbers are a term.
To find how many terms there are up to 10^n, see if A009994(i) is for 2 <= i <= binomial(n + 9, 9). If it is then that adds A047726(A009994(i)) to the total (we don't have to worry about digits 0 in A009994(i) as there aren't any for the specified i). One may put further constraints on i. For example, A009994(i) can't contain an even digit and a 5 in the same number. - David A. Corneth, Sep 27 2016

Examples

			25 is not in this sequence because 2*5 = 10 and 1*0 = 0.
		

Crossrefs

Cf. A031347, A034048 (complement).
Cf. A028843 (a subsequence).
Union of A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 1-9).
Cf. A052382 (a supersequence).

Programs

  • Mathematica
    Select[Range@ 112, FixedPoint[Times @@ IntegerDigits@ # &, #] > 0 &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    is(n) = n=digits(n); while(#n>1,n=digits(prod(i=1,#n,n[i]))); #n>0 \\ David A. Corneth, Sep 27 2016

Extensions

More terms from Michael De Vlieger, Sep 26 2016

A199988 Numbers whose product of digits is 6.

Original entry on oeis.org

6, 16, 23, 32, 61, 116, 123, 132, 161, 213, 231, 312, 321, 611, 1116, 1123, 1132, 1161, 1213, 1231, 1312, 1321, 1611, 2113, 2131, 2311, 3112, 3121, 3211, 6111, 11116, 11123, 11132, 11161, 11213, 11231, 11312, 11321, 11611, 12113, 12131, 12311, 13112, 13121
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Crossrefs

Subsequence of A034053.
Cf. A007954.

Programs

  • Maple
    f:= proc(d) local b,i,t;
       b:= (10^d-1)/9;
       op(sort([seq(b+5*10^i,i=0..d-1),seq(b+10^t[1]+2*10^t[2],t = combinat:-permute([$0..d-1],2))]))
    end proc:
    seq(f(i),i=1..5); # Robert Israel, Jan 13 2021
  • Mathematica
    Select[Range[20000], Times @@ IntegerDigits[#] == 6 &] (* T. D. Noe, Nov 16 2011 *)
  • Python
    from sympy import prod
    from sympy.utilities.iterables import multiset_permutations
    def agen(maxdigits):
        for digs in range(1, maxdigits+1):
            for mp in multiset_permutations("1"*(digs-1) + "236", digs):
                if prod(map(int, mp)) == 6: yield int("".join(mp))
    print(list(agen(5))) # Michael S. Branicky, Jun 16 2021

A201020 Composite numbers whose multiplicative digital root is 6.

Original entry on oeis.org

6, 16, 28, 32, 44, 48, 68, 74, 82, 84, 86, 116, 123, 128, 132, 144, 147, 148, 161, 168, 174, 182, 184, 186, 213, 218, 224, 228, 231, 238, 242, 244, 246, 264, 267, 272, 276, 282, 288, 289, 298, 312, 321, 328, 344, 368, 374, 377, 378, 382, 386, 387, 414, 417, 418, 422
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2011

Keywords

Comments

Complement of A201019 with respect to A034053.

Examples

			Number 128 is in sequence because 1*2*8=16, 1*6=6.
		

Crossrefs

Cf. A201019 (primes whose multiplicative digital root is 6), A034053 (numbers whose multiplicative digital root is 6).

Programs

  • Mathematica
    mdr6Q[n_]:=CompositeQ[n]&&NestWhile[Times@@IntegerDigits[#]&,n,#>9&] ==6; Select[Range[500],mdr6Q] (* Harvey P. Dale, May 30 2015 *)

A201019 Primes whose multiplicative digital root is 6.

Original entry on oeis.org

23, 47, 61, 227, 281, 283, 347, 443, 449, 467, 487, 647, 683, 743, 769, 773, 797, 821, 823, 829, 863, 887, 967, 977, 1123, 1213, 1231, 1283, 1289, 1321, 1471, 1481, 1487, 1489, 1627, 1697, 1741, 1783, 1823, 1847, 1861, 1873, 2113, 2131, 2237, 2243, 2267, 2273, 2281, 2287, 2311
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2011

Keywords

Comments

Complement of A201020 with respect to A034053.

Examples

			Prime 227 is in sequence because 2*2*7=28, 2*8=16, 1*6=6.
		

Crossrefs

Cf. A201020 (composite numbers whose multiplicative digital root is 6), A034053 (numbers whose multiplicative digital root is 6).

Programs

  • Mathematica
    dr6Q[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]==6; Select[ Prime[ Range[ 400]],dr6Q] (* Harvey P. Dale, Jun 16 2016 *)
Previous Showing 11-16 of 16 results.