cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A331412 Unitary abundant numbers k such that k + 1 is also unitary abundant.

Original entry on oeis.org

8857357509, 10783550414, 15197873690, 23620285689, 25537083494, 34736070369, 60326914934, 64139567205, 73969772954, 75776483145, 77509981185, 83968675790, 93092467754, 100012014465, 112236593469, 113606741534, 116519300534, 118905484334, 132584489114, 134889106065
Offset: 1

Views

Author

Amiram Eldar and Giovanni Resta, Jan 18 2020

Keywords

Comments

Apparently most of the terms are squarefree. Up to 10^13 there are 1150 terms, for only 17 terms k either k or k + 1 is nonsquarefree, and there are no terms k such that both k and k + 1 are nonsquarefree. The first nonsquarefree term is a(32) = 285491549265.

Examples

			8857357509 is a term since usigma(8857357509) = 17766604800 > 2 * 8857357509, and usigma(8857357510) = 17851083264 > 2 * 8857357510, where usigma is the sum of unitary divisors function (A034448).
		

Crossrefs

Analogous sequences: A096399 (regular abundant), A283418 (primitive), A318167 (bi-unitary), A327635 (infinitary), A327942 (nonunitary).

A129468 Unitary abundance of n.

Original entry on oeis.org

-1, -1, -2, -3, -4, 0, -6, -7, -8, -2, -10, -4, -12, -4, -6, -15, -16, -6, -18, -10, -10, -8, -22, -12, -24, -10, -26, -16, -28, 12, -30, -31, -18, -14, -22, -22, -36, -16, -22, -26, -40, 12, -42, -28, -30, -20, -46, -28, -48, -22, -30, -34, -52, -24
Offset: 1

Views

Author

Ant King, Apr 17 2007

Keywords

Comments

The values of n which generate negative elements of this sequence are in A129487, the values of n which generate the zeros of this sequence are in A002827 and the values of n which generate positive elements of this sequence are in A034683

Examples

			As the unitary divisors of 12 are 1, 3, 4 and 12, which sum to 20, then a(12) = 20 - 2*12 = -4.
		

Crossrefs

Programs

  • Maple
    A129468 := proc(n)
        A034448(n)-2*n ;
    end proc:
    seq(A129468(n),n=1..40) ; # R. J. Mathar, Nov 10 2014
  • Mathematica
    UnitaryDivisors[n_Integer?Positive] := Select[Divisors[n], GCD[ #,n/# ] == 1&]; sstar[n_] := Plus@@UnitaryDivisors[n] - n; sstar[ # ] - # &/@ Range[40]
    a[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - 2*n; a[1] = -1; Array[a, 100] (* Amiram Eldar, Apr 06 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, 1 + f[i, 1]^f[i, 2]) - 2*n; } \\ Amiram Eldar, Apr 06 2024

Formula

a(n) = A034460(n) - n = A034448(n) - 2n.
From Amiram Eldar, Apr 06 2024: (Start)
a(A129487(n)) < 0.
a(A002827(n)) = 0.
a(A034683(n)) > 0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)/(2*zeta(3)) - 1 = -0.3157836111... . (End)

A285615 Numbers k such that usigma(k) >= 3*k, where usigma(k) = sum of unitary divisors of k (A034448).

Original entry on oeis.org

30030, 39270, 43890, 46410, 51870, 53130, 62790, 66990, 67830, 71610, 79170, 82110, 84630, 85470, 91770, 94710, 99330, 101010, 103530, 108570, 111930, 117390, 122430, 128310, 136290, 140910, 144690, 154770, 161070, 164010, 166530, 168630, 182490, 191730
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2017

Keywords

Comments

Unitary 3-abundant numbers, correspond to 3-abundant numbers (A023197).
Similarly, the first numbers k such that usigma(k) >= 4*k are 200560490130, 7420738134810, 8222980095330, and 8624101075590. - Giovanni Resta, Apr 23 2017
The least odd term in this sequence is A070826(17) = 961380175077106319535 and the least odd number k such that usigma(k) >= 4*k is A070826(52) = 5.312...*10^95. - Amiram Eldar, Dec 26 2020

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Select[Range[100000], usigma[#] >= 3*# &]
  • PARI
    isok(k) = sumdivmult(k, d, if(gcd(d, k/d)==1, d)) >= 3*k; \\ Michel Marcus, Dec 26 2020

A380929 Numbers k such that A380845(k) > 2*k.

Original entry on oeis.org

36, 72, 84, 140, 144, 168, 180, 264, 270, 280, 288, 300, 336, 360, 372, 392, 450, 520, 528, 532, 540, 558, 560, 576, 594, 600, 612, 620, 672, 720, 744, 756, 780, 784, 840, 900, 930, 1036, 1040, 1050, 1056, 1064, 1068, 1080, 1092, 1116, 1120, 1134, 1152, 1170, 1180, 1188, 1200
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Analogous to abundant numbers (A005101) with A380845 instead of A000203.

Examples

			36 is a term since A380845(36) = 84 > 2 * 36 = 72.
		

Crossrefs

Subsequence of A005101.
Subsequences: A380847, A380848, A380930, A380931.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k]; Select[Range[1200], q]
  • PARI
    isok(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}

A302570 Unitary barely abundant numbers: unitary abundant numbers k such that usigma(k)/k < usigma(m)/m for all unitary abundant numbers m < k, where usigma(k) is the sum of the unitary divisors of k (A034448).

Original entry on oeis.org

30, 42, 66, 70, 222, 246, 258, 282, 294, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 726, 750, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1014, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338, 1362, 1374, 1398, 1434
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2018

Keywords

Comments

The unitary version of A071927.

Examples

			The values of usigma(k)/k are 2.4, 2.285..., 2.181..., 2.057..., 2.054...
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; seq = {}; r = 3; Do[s = usigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10000}]; seq

A302993 Number of unitary abundant numbers < 10^n.

Original entry on oeis.org

0, 5, 64, 691, 7011, 70030, 699597, 7005450, 70048740, 700321813, 7003128054, 70034216605, 700350142296, 7003426996800, 70033987968599, 700341098675985, 7003416399263312
Offset: 1

Views

Author

Amiram Eldar, Apr 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; uabQ[n_] := usigma[n] > 2 n; c = 0; k = 1; seq={}; Do[While[k < 10^n, If[uabQ[k], c++]; k++]; AppendTo[seq, c], {n, 1, 5}]; seq

Formula

Conjecture: Lim_{n->oo} a(n)/10^n = 0.07... is the density of unitary abundant numbers.

Extensions

a(10)-a(17) from Hiroaki Yamanouchi, Aug 03 2018

A328328 Unitary admirable numbers: numbers k such that there is a proper unitary divisor d of k such that usigma(k) - 2d = 2k, where usigma is the sum of unitary divisors function (A034448).

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 318, 354, 366, 402, 420, 426, 438, 474, 498, 534, 582, 606, 618, 630, 642, 654, 660, 678, 726, 750, 762, 780, 786, 822, 834, 840, 894, 906, 942, 978, 990, 1002, 1014, 1020, 1038, 1074, 1086
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2019

Keywords

Comments

Differs from A302574(n) at n >= 30.
Equivalently, numbers that equal to the sum of their proper unitary divisors, with one of them taken with a minus sign.
The unitary version of A111592.
The squarefree terms are also admirable numbers (A111592). The nonsquarefree terms are 150, 294, 420, 630, 660, 726, 750, 780, 840, 990, ...
The unitary abundant numbers (A034683) that are not unitary admirable numbers are: 210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 924, 930, 966, ...

Examples

			150 is in the sequence since 150 = 1 + 2 + 3 - 6 + 25 + 50 + 75 is the sum of its proper unitary divisors with one of them, 6, taken with a minus sign.
		

Crossrefs

Subsequence of A034683 and A290466.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); aQ[n_] := (ab = usigma[n] - 2n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && CoprimeQ[2*n/ab, ab/2]; Select[Range[1086], aQ]

A063846 Numbers k such that sigma(k) - usigma(k) > 2k.

Original entry on oeis.org

1440, 1800, 2160, 2880, 3024, 3600, 4320, 5040, 5400, 5760, 6048, 6480, 7056, 7200, 7560, 7920, 8064, 8640, 9000, 9072, 9360, 9504, 9720, 10080, 10584, 10800, 11088, 11520, 11880, 12096, 12240, 12600, 12960, 13680, 14040, 14112, 14400, 15120
Offset: 1

Views

Author

Jason Earls, Aug 25 2001

Keywords

Crossrefs

Programs

  • PARI
    u(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d));
    j=[]; for(n=1,20000, if(sigma(n)-u(n)>2*n,j=concat(j,n))); j
    
  • PARI
    u(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))
    { n=0; for (m=1, 10^9, if(sigma(m) - u(m) > 2*m, write("b063846.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 01 2009

A323341 Numbers k whose unitary divisors have an even sum which is larger than 2k, but they cannot be partitioned into two disjoint parts whose sums are equal.

Original entry on oeis.org

2394, 1452330, 5771934, 5786298, 5800662, 5834178, 5843754, 5858118, 5886846, 5905998, 5920362, 5929938, 5992182, 6035274, 6059214, 6078366, 6087942, 6102306, 6107094, 6121458, 6174126, 6202854, 6207642, 6245946, 6265098, 6274674, 6303402, 6336918, 6360858
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Crossrefs

The unitary version of A171641.

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; seq={}; Do[s=usigma[n]; If[OddQ[s] || s<=2n, Continue[]]; udiv = Select[Divisors[n], GCD[ #, n/# ] == 1 &]; If[Coefficient[Times @@ (1 + x^udiv) // Expand, x, s/2] == 0, AppendTo[seq, n]], {n, 1, 1500000}]; seq

A333928 Recursive abundant numbers: numbers k such that A333926(k) > 2*k.

Original entry on oeis.org

12, 18, 20, 30, 36, 42, 60, 66, 70, 78, 84, 90, 100, 102, 108, 114, 120, 126, 132, 138, 140, 144, 150, 156, 168, 174, 180, 186, 196, 198, 204, 210, 220, 222, 228, 234, 240, 246, 252, 258, 260, 270, 276, 282, 294, 300, 306, 308, 318, 324, 330, 336, 340, 342, 348
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Examples

			12 is a term since A333926(12) = 28 > 2 * 12.
		

Crossrefs

Analogous sequences: A005101, A034683 (unitary), A064597 (nonunitary), A129575 (exponential), A129656 (infinitary), A292982 (bi-unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[350], recDivSum[#] > 2*# &]
Previous Showing 11-20 of 40 results. Next