cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A111220 d_10(n), tau_10(n), number of ordered factorizations of n as n = rstuvwxyza (10-factorizations).

Original entry on oeis.org

1, 10, 10, 55, 10, 100, 10, 220, 55, 100, 10, 550, 10, 100, 100, 715, 10, 550, 10, 550, 100, 100, 10, 2200, 55, 100, 220, 550, 10, 1000, 10, 2002, 100, 100, 100, 3025, 10, 100, 100, 2200, 10, 1000, 10, 550, 550, 100, 10, 7150, 55, 550, 100, 550, 10, 2200, 100
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_2(n)...tau_6(n): A000005, A007425, A007426, A061200, A034695.
Column k=10 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 10], {n, 55}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 10], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,x,numdiv(x))))))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+9, 9)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_9(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+9,9). - Amiram Eldar, Sep 13 2020

A111221 d_11(n), tau_11(n), number of ordered factorizations of n as n = rstuvwxyzab (11-factorizations).

Original entry on oeis.org

1, 11, 11, 66, 11, 121, 11, 286, 66, 121, 11, 726, 11, 121, 121, 1001, 11, 726, 11, 726, 121, 121, 11, 3146, 66, 121, 286, 726, 11, 1331, 11, 3003, 121, 121, 121, 4356, 11, 121, 121, 3146, 11, 1331, 11, 726, 726, 121, 11, 11011, 66, 726, 121, 726, 11, 3146, 121
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_1(n): A000012
Cf. tau_2(n)...tau_6(n): A000005, A007425, A007426, A061200, A034695.
Cf. tau_7(n)...tau_10(n): A111217, A111218, A111219, A111220.
Cf. tau_12(n): A111306.
Column k=11 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 11], {n, 55}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 11], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,q,sumdiv(q,x,numdiv(x)))))))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+10, 10)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_10(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+10,10). - Amiram Eldar, Sep 13 2020

A111306 d_12(n), tau_12(n), number of ordered factorizations of n as n = rstuvwxyzabc (12-factorizations).

Original entry on oeis.org

1, 12, 12, 78, 12, 144, 12, 364, 78, 144, 12, 936, 12, 144, 144, 1365, 12, 936, 12, 936, 144, 144, 12, 4368, 78, 144, 364, 936, 12, 1728, 12, 4368, 144, 144, 144, 6084, 12, 144, 144, 4368, 12, 1728, 12, 936, 936, 144, 12, 16380, 78, 936, 144, 936, 12, 4368, 144
Offset: 1

Views

Author

Gerald McGarvey, Nov 02 2005

Keywords

Crossrefs

Column k=12 of A077592.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1, 1,
          add(b(d, k-1), d=numtheory[divisors](n)))
        end:
    a:= n-> b(n, 12):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jun 12 2024
  • Mathematica
    tau[k_,1]:=1; tau[k_,n_]:=Times@@(Binomial[#+k-1,k-1]&/@FactorInteger[n][[All,2]]); Table[tau[12,n],{n,1000}] (* Enrique Pérez Herrero, Jan 17 2013 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,q,sumdiv(q,r,sumdiv(r,x,numdiv(x))))))))))),","))
    
  • PARI
    a(n,f=factor(n))=f=f[,2]; prod(i=1,#f, binomial(f[i]+11, 11)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_11(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+11,11). - Amiram Eldar, Sep 13 2020

A341882 Number of ordered factorizations of n into 6 factors > 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 64

Views

Author

Ilya Gutkovskiy, Feb 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; series(x*(1+add(b(n/d),
          d=numtheory[divisors](n) minus {1, n})), x, 7)
        end:
    a:= n-> coeff(b(n), x, 6):
    seq(a(n), n=64..160);  # Alois P. Heinz, Feb 22 2021
  • Mathematica
    b[n_] := b[n] = Series[x*(1 + Sum[b[n/d],
         {d, Divisors[n]~Complement~{1, n}}]), {x, 0, 7}];
    a[n_] := Coefficient[b[n], x, 6];
    Table[a[n], {n, 64, 160}] (* Jean-François Alcover, Feb 28 2022, after Alois P. Heinz *)

Formula

Dirichlet g.f.: (zeta(s) - 1)^6.
a(n) = 15 * A000005(n) - 20 * A007425(n) + 15 * A007426(n) - 6 * A061200(n) + A034695(n) - 6 for n > 1.

A383657 Numerator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(3/2).

Original entry on oeis.org

1, 3, 3, 15, 3, 9, 3, 35, 15, 9, 3, 45, 3, 9, 9, 315, 3, 45, 3, 45, 9, 9, 3, 105, 15, 9, 35, 45, 3, 27, 3, 693, 9, 9, 9, 225, 3, 9, 9, 105, 3, 27, 3, 45, 45, 9, 3, 945, 15, 45, 9, 45, 3, 105, 9, 105, 9, 9, 3, 135, 3, 9, 45, 3003, 9, 27, 3, 45, 9, 27, 3, 525, 3
Offset: 1

Views

Author

Vaclav Kotesovec, May 04 2025

Keywords

Comments

In general, for m > 0, if Dirichlet g.f. is zeta(s)^m, then Sum_{j=1..n} a(j) ~ n*log(n)^(m-1)/Gamma(m) * (1 + (m-1)*(m*gamma - 1)/log(n)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function.

Crossrefs

Programs

  • Mathematica
    coeff=CoefficientList[Series[1/(1-x)^(3/2),{x,0,20}]//Normal,x];dptTerm[n_]:=Module[{flist=FactorInteger[n]},If[n==1,coeff[[1]],Numerator[Times@@(coeff[[flist[[All,2]]+1]])]]];Array[dptTerm,73] (* Shenghui Yang, May 04 2025 *)
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(3/2))[n]), ", "))

Formula

Sum_{k=1..n} A383657(k)/A383658(k) ~ 2*n*sqrt(log(n)/Pi) * (1 - (1 - 3*gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620.

A383658 Denominator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(3/2).

Original entry on oeis.org

1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 04 2025

Keywords

Comments

Is this a duplicate of A046644 (the first 8192 entries are the same)? - R. J. Mathar, May 06 2025

Crossrefs

Programs

  • Mathematica
    coeff=CoefficientList[Series[1/(1-x)^(3/2),{x,0,20}]//Normal,x]; dptTerm[n_]:=Module[{flist=FactorInteger[n]},If[n==1,coeff[[1]],Denominator[Times@@(coeff[[flist[[All,2]]+1]])]]];Array[dptTerm,77] (* Shenghui Yang, May 04 2025 *)
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-X)^(3/2))[n]), ", "))

Formula

Sum_{k=1..n} A383657(k)/A383658(k) ~ 2*n*sqrt(log(n)/Pi) * (1 - (1 - 3*gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620.

A327774 Composite numbers m such that tau_k(m) = m for some k, where tau_k is the k-th Piltz divisor function (A077592).

Original entry on oeis.org

18, 36, 75, 100, 200, 224, 225, 441, 560, 1183, 1344, 1920, 3025, 8281, 26011, 34606, 64009, 72030, 76895, 115351, 197173, 280041, 494209, 538265, 1168561, 1947271, 2927521, 3575881, 3613153, 3780295, 4492125, 7295401, 10665331, 11580409, 12511291, 13476375, 15381133
Offset: 1

Views

Author

Amiram Eldar, Sep 25 2019

Keywords

Comments

The prime numbers are excluded from this sequence since tau_p(p) = p for all primes p.
The corresponding values of k are 3, 3, 5, 4, 4, 4, 5, 6, 4, 13, 4, 4, 10, 13, 37, 11, 22, 7, 13, 61, 73, 17, 37, 13, 46, 157, 58, 61, 193, 29, 9, 73, 277, 82, 37, 9, 313, ...

Examples

			18 is in the sequence since tau_3(18) = A007425(18) = 18.
		

Crossrefs

Programs

  • Mathematica
    fun[e_, k_] := Times @@ (Binomial[# + k - 1, k - 1] & /@ e); tau[n_, k_] := fun[ FactorInteger[n][[;; , 2]], k]; aQ[n_] := CompositeQ[n] && Module[{k = 2}, While[(t = tau[n, k]) < n, k++]; t == n]; Select[Range[10^5], aQ]
Previous Showing 11-17 of 17 results.