cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A050941 Numbers that are not the sum of consecutive triangular numbers.

Original entry on oeis.org

2, 5, 7, 8, 11, 12, 13, 14, 17, 18, 22, 23, 24, 26, 27, 29, 30, 32, 33, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 79, 82, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2000

Keywords

Comments

Numbers that are not the difference of two tetrahedral numbers. - Franklin T. Adams-Watters, Dec 16 2015

Crossrefs

Complement of A034706.

Programs

  • Haskell
    import Data.List.Ordered (minus)
    a050941 n = a050941_list !! (n-1)
    a050941_list = minus [0..] a034706_list
    -- Reinhard Zumkeller, May 12 2015
  • Mathematica
    lim = 20; Take[#, Floor[Length[#]/lim]] &@ Complement[Range@ Max@ #, #] &@ Union[Subtract @@@ Map[Sort[#, Greater] &, Permutations[Table[Binomial[n + 2, 3], {n, 0, lim}], {2}]]] (* Michael De Vlieger, Dec 17 2015, in part after Zerinvary Lajos at A000292 *)

A269414 Prime numbers that are the sum of one or more consecutive triangular numbers.

Original entry on oeis.org

3, 19, 31, 83, 109, 199, 251, 409, 571, 631, 683, 829, 1091, 1489, 1999, 2341, 2531, 2971, 3529, 4621, 4789, 5051, 7039, 7211, 7669, 8779, 9721, 10459, 10711, 11171, 13681, 14851, 15131, 16069, 16381, 16883, 17659, 18731, 20011, 20359, 21683, 23251, 24851
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 25 2016

Keywords

Crossrefs

A309783 Numbers that are sums of one or more consecutive positive triangular numbers in more than one way.

Original entry on oeis.org

10, 36, 55, 64, 100, 120, 136, 164, 210, 276, 361, 435, 460, 514, 560, 596, 676, 760, 1176, 1225, 1320, 1326, 1460, 1484, 1485, 1505, 1540, 1684, 1736, 1770, 1891, 1936, 2014, 2080, 2145, 2180, 2314, 2485, 2596, 2890, 3156, 3244, 3275, 3364, 3486, 3570, 3710, 3916
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 17 2019

Keywords

Comments

The first number that is the sum in three ways is 2180. The first that is the sum in four ways is 10053736. - Robert Israel, Aug 20 2019

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    V:= Vector(N):
    for i from 1 while i*(i+1)/2 <= N do
      s:= i*(i+1)*(i+2)/6;
      for j from i-1 to 0 by -1 do
        t:= j*(j+1)*(j+2)/6;
        if s-t > N then break fi;
        V[s-t]:= V[s-t]+1
      od;
    od:
    select(t -> V[t]>1, [$1..N]); # Robert Israel, Aug 20 2019

Formula

A307666(a(n)) > 1.

A385656 Numbers k such that the sum of the decimal digits of k^2 divides k^2.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 12, 15, 18, 20, 21, 24, 30, 36, 39, 42, 45, 48, 49, 51, 52, 54, 60, 63, 65, 66, 68, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 111, 112, 117, 120, 126, 132, 138, 140, 144, 148, 150, 156, 162, 168, 174, 180, 182, 190, 198, 200, 201, 204, 207
Offset: 1

Views

Author

Vighnesh Patil, Jul 06 2025

Keywords

Examples

			15 is a term 15^2 = 225; digit sum of 225 = 2 + 2 + 5 = 9; 225 mod 9 = 0, so 15 is included.
18 is a term 18^2 = 324; digit sum of 324 = 3 + 2 + 4 = 9; 324 mod 9 = 0, so 16 is included.
		

Crossrefs

Programs

  • Maple
    digitSum := n -> add(i,i=convert(n, base, 10)):
    isok := n -> modp(n^2, digitSum(n^2)) = 0:
    select(isok, [$1..400])[];
  • Mathematica
    DigitSum[n_] := Total[IntegerDigits[n]];
    Select[Range[400], Mod[#^2, DigitSum[#^2]] == 0 &]
  • PARI
    isok(k) = (k^2 % sumdigits(k^2)) == 0; \\ Michel Marcus, Jul 06 2025
  • Python
    def digit_sum(n): return sum(int(d) for d in str(n))
    def ok(n): return (n**2) % digit_sum(n**2) == 0
    print([n for n in range(1, 1000) if ok(n)])
    

Formula

a(n) = sqrt(A118547(n)). - Michel Marcus, Jul 07 2025
Previous Showing 11-14 of 14 results.