cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A359018 a(n) = Sum_{d|n} d * 3^(d-1).

Original entry on oeis.org

1, 7, 28, 115, 406, 1492, 5104, 17611, 59077, 197242, 649540, 2127364, 6908734, 22325632, 71744968, 229600123, 731794258, 2324583475, 7360989292, 23245426690, 73222477552, 230128420012, 721764371008, 2259438436708, 7060738412431, 22029510754258, 68630377423960
Offset: 1

Views

Author

Seiichi Manyama, Dec 19 2022

Keywords

Crossrefs

Programs

  • Magma
    A359018:= func< n | (&+[3^(d-1)*d: d in Divisors(n)]) >;
    [A359018(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Mathematica
    a[n_] := DivisorSum[n, 3^(#-1)*# &]; Array[a, 27] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d*3^(d-1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-3*x^k)^2))
    
  • SageMath
    def A359018(n): return sum(3^(k-1)*k for k in (1..n) if (k).divides(n))
    [A359018(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

G.f.: Sum_{k>=1} x^k/(1 - 3 * x^k)^2.

A336998 a(n) = n! * Sum_{d|n} 3^(d - 1) / d!.

Original entry on oeis.org

1, 5, 15, 87, 201, 3123, 5769, 148347, 913761, 11541123, 39975849, 2616723387, 6227552241, 230557039443, 4151870901369, 76980002233707, 355687471142721, 27886053280896963, 121645100796252489, 10474674957482235867, 135117295282596928401, 2811664555920692775603
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 10 2020

Keywords

Crossrefs

Programs

  • Magma
    A336998:= func< n | Factorial(n)*(&+[3^(d-1)/Factorial(d): d in Divisors(n)]) >;
    [A336998(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
    
  • Mathematica
    Table[n! Sum[3^(d - 1)/d!, {d, Divisors[n]}], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[(Exp[3 x^k] - 1)/3, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = n! * sumdiv(n, d, 3^(d-1)/d!); \\ Michel Marcus, Aug 12 2020
    
  • SageMath
    def A336998(n): return factorial(n)*sum(3^(k-1)/factorial(k) for k in (1..n) if (k).divides(n))
    [A336998(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024

Formula

E.g.f.: Sum_{k>=1} (exp(3*x^k) - 1) / 3.
a(p) = p! + 3^(p - 1), where p is prime.

A363913 a(n) = Sum_{k=0..n} divides(k, n) * 3^k, where divides(k, n) = 1 if k divides n, otherwise 0.

Original entry on oeis.org

1, 3, 12, 30, 93, 246, 768, 2190, 6654, 19713, 59304, 177150, 532290, 1594326, 4785168, 14349180, 43053375, 129140166, 387440940, 1162261470, 3486843786, 10460355420, 31381236768, 94143178830, 282430075332, 847288609689, 2541867422664, 7625597504700, 22876797240210
Offset: 0

Views

Author

Peter Luschny, Jun 28 2023

Keywords

Crossrefs

Cf. A000007 (m = 0), A000005 (m = 1), A055895 (m = 2), this sequence (m = 3).

Programs

  • Magma
    A363913:= func< n | n eq 0 select 1 else 3*(&+[3^(d-1): d in Divisors(n)]) >;
    [A363913(n): n in [0..40]]; // G. C. Greubel, Jun 26 2024
  • Maple
    divides := (k, n) -> ifelse(k = n or (k > 0 and irem(n, k) = 0), 1, 0):
    a := n -> local j; add(divides(j, n) * 3^j, j = 0 ..n): seq(a(n), n = 0..28);
  • Mathematica
    A363913[n_]:= If[n==0, 1, 3*DivisorSum[n, 3^(#-1) &]];
    Table[A363913[n], {n,0,40}] (* G. C. Greubel, Jun 26 2024 *)
  • Python
    from sympy import divisors
    def A363913(n): return sum(3**k for k in divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Jun 28 2023
    
  • SageMath
    def a(n): return sum(3^k * k.divides(n) for k in srange(n+1))
    print([a(n) for n in range(29)])
    

Formula

a(n) = Sum_{j=0..n} A113704(j, n) * m^j for m = 3; for other cases see the crossreferences.
a(n) = 3*A034730(n), n>=1. - R. J. Mathar, Jul 04 2023
Previous Showing 11-13 of 13 results.