cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A104500 Number of different groupings among the hierarchical orderings of n unlabeled elements.

Original entry on oeis.org

1, 4, 11, 35, 98, 294, 832, 2401, 6774, 19137, 53466, 148994, 412233, 1136383, 3116654, 8515706, 23172455, 62836916, 169801824, 457406173, 1228382159, 3289493887, 8784935160, 23400668297, 62179339101, 164832960183, 435978612329, 1150673925933, 3030701471118
Offset: 1

Views

Author

Thomas Wieder, Mar 11 2005

Keywords

Examples

			Let * denote an element, let : denote separator among different levels within a hierarchy, let | denote a separator between different hierarchies. Furthermore, the braces {} indicate a group. For n=3 one has a(3) = 11 because
{***}, {*|*|*}, {*}{*}{*}, {*:*:*}, {*:**}, {*|**}, {*:*|*}, {*:*}{*}, {*|*}{*}, {**:*}, {*}{**}.
		

Crossrefs

Programs

  • Maple
    etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=numtheory[divisors](j)) *b(n-j), j=1..n)/n) end end: b:= etr(n-> 2^(n-1)): a:= etr(b): seq(a(n), n=1..30); # Alois P. Heinz, Apr 21 2012
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[Function[{n}, 2^(n-1)]]; a = etr[b]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)

Formula

Euler transform of 1, 3, 7, 18, 42, 104, 244, 585, 1373, ... = A034691.

Extensions

More terms from Alois P. Heinz, Apr 21 2012

A158099 Euler transform of square powers of 2: [2,2^4,2^9,...,2^(n^2),...].

Original entry on oeis.org

1, 2, 19, 548, 66749, 33695574, 68787981855, 563088066184424, 18447871299903970005, 2417888543453357864445634, 1267655436282309648681395304255, 2658458526916981532120588021462151100, 22300750515466692968838881088968809185127601
Offset: 0

Views

Author

Paul D. Hanna, Mar 20 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 19*x^2 + 548*x^3 + 66749*x^4 +...
A(x) = 1/[(1-x)^2*(1-x^2)^(2^4)*(1-x^3)^(2^9)*(1-x^4)^(2^16)*...].
		

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= etr(n->2^(n^2)):
    seq(a(n), n=0..15);  # Alois P. Heinz, Sep 03 2012
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Function[{n}, 2^(n^2)]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^(2^(k^2))),n)
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,sumdiv(m,d,d*2^(d^2))*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Oct 18 2009

Formula

G.f.: A(x) = 1/Product_{n>=1} (1 - x^n)^(2^(n^2)).
G.f.: exp( Sum_{n>=1} L(n)*x^n/n ) where L(n) = Sum_{d|n} d*2^(d^2). [Paul D. Hanna, Oct 18 2009]

A261043 Number of multisets of nonempty words with a total of n letters over binary alphabet such that all letters occur at least once in the multiset.

Original entry on oeis.org

0, 0, 3, 14, 49, 148, 427, 1170, 3150, 8288, 21562, 55368, 140998, 355854, 892014, 2220856, 5497483, 13533264, 33150801, 80825768, 196218139, 474423934, 1142756063, 2742781794, 6561049181, 15645058210, 37194447065, 88174246904, 208463588035, 491585765888
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Crossrefs

Column k=2 of A257740.

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^(2^k), {k, 1, 30}] - 2*Product[1/(1 - x^k), {k, 1, 30}] + 1, {x, 0, 30}], x]
    (* Second program: *)
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^# &]*A[n - j, k], {j, 1, n}]/n];
    T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
    a[n_] := T[n, 2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz in A257740 *)

Formula

a(n) = A034899(n) - 2*A000041(n) + 1.
a(n) ~ c^2 * 2^(n-1) * exp(2*sqrt(n) - 1/2) / (sqrt(Pi) * n^(3/4)), where c = A247003 = exp( Sum_{k>=2} 1/(k*(2^k-2)) ) = 1.3976490050836502...

Extensions

New name from Alois P. Heinz, Oct 07 2018

A104525 The number of hierarchical orderings among the parts of the integer partitions of the integer n.

Original entry on oeis.org

1, 4, 12, 40, 123, 395, 1227, 3851, 11944, 37032, 114144, 351040, 1075316, 3285398, 10007731, 30409157, 92169561, 278738219, 841132013, 2533138770, 7614144053, 22845435104, 68427663680, 204623945617, 610951554377, 1821438443615, 5422608839874, 16121857331124
Offset: 1

Views

Author

Thomas Wieder, Mar 12 2005. Definition revised Mar 28 2009

Keywords

Comments

Euler transform of A055887 = number of ordered partitions of partitions.

Examples

			Let * denote an element, let : denote separator among different levels within a hierarchy, let | denote a separator between different hierarchies. Furthermore, the braces {} indicate a frame. For n=3 one has a(3) = 12 because:
{*:**}, {*:*}:{*}, {*}:{**}, {*:*:*}, {*}:{*}:{*}, {**}|{*}, {*}|{*:*}, {*}|{*}|{*}, {**}:{*}, {*}:{*:*}, {*}:{*}|{*}, {***}.
		

Crossrefs

Programs

  • Maple
    We can use combstruct to actually construct the structures A104525(n). %1 := Sequence(Set(Set(Z))).
    with(combinat): with (numtheory): b:= proc(n) local k; option remember; `if`(n=0, 1, add (numbpart(k) * b(n-k), k=1..n)) end: a:= proc(n) option remember; `if` (n=0, 1, add (add (d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq (a(n), n=1..30); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    max = 30; A055887 = CoefficientList[1/(2 - 1/QPochhammer[x, x]) + O[x]^(max + 1), x] ; s = 1/Product[(1 - x^n)^A055887[[n + 1]], {n, 1, max}] + O[x]^max; CoefficientList[s, x] // Rest (* Jean-François Alcover, Jan 10 2016 *)

Extensions

More terms from Alois P. Heinz, Feb 02 2009

A347011 Euler transform of j-> ceiling(2^(j-2)).

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 43, 93, 207, 453, 999, 2185, 4796, 10470, 22871, 49815, 108427, 235515, 511074, 1107248, 2396299, 5179169, 11181877, 24113939, 51949572, 111801422, 240381703, 516355235, 1108186951, 2376314763, 5091422730, 10900063776, 23317805916
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2021

Keywords

Comments

Differs from A206301 first at n=10.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, i-1)*binomial(ceil(2^(i-2))+j-1, j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
           ceil(2^(d-2)), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..35);
  • Mathematica
    CoefficientList[Series[1/(1-x) * Product[1/(1 - x^k)^(2^(k-2)), {k, 2, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 11 2021 *)

Formula

G.f.: Product_{j>0} 1/(1-x^j)^ceiling(2^(j-2)).

A104533 E.g.f.: exp(2x/(1-2x)).

Original entry on oeis.org

1, 2, 12, 104, 1168, 16032, 259264, 4817024, 100954368, 2353435136, 60355677184, 1687701792768, 51077784506368, 1662782678736896, 57917727119818752, 2148722382829027328, 84569896954751942656, 3518839711497761980416, 154306731918073225019392
Offset: 0

Views

Author

Thomas Wieder, Mar 13 2005

Keywords

Comments

Number of hierarchical orderings for n labeled elements (see A075729) when there are two kinds A and B of elements.

Examples

			Let "a_i" and "b_j" be elements situated in the classes A and B with _i and _j as labels. Let : denote a separator among levels (ranks). Let | denote a separator among groups. E.g., a_1:b_2|b_1 is a hierarchy composed of two groups which contain three elements in total.
a(2) = 12 from b_2:b_1, b_2:a_1, b_2|b_1, a_1:a_2, b_2:a_1, a_1|a_2, a_1:b_2, a_2:a_1, b_1:a_2, a_2:b_1, b_1|a_2, b_2:b_1.
		

Crossrefs

Equals 2^n * A000262(n).

Programs

  • Maple
    SetSeqUnnL := [T, {T=Set(S,card>=1), S=Sequence(U,card>=1), U=Union(a,b),a=Atom, b=Atom},labeled]; seq(count(SetSeqUnnL,size=j),j=1..20);
    A104533 := proc(n::integer) local i,j,prttnlst,prttn,liste,ZahlVerschiedenerTeile,H,Mltplztt; Mltplztt:=vector[1000]; prttnlst:=partition(n); H := 0; for i from 1 to nops(prttnlst) do prttn := prttnlst[i]; liste := convert(prttn,multiset); ZahlVerschiedenerTeile := nops(liste); for j from 1 to ZahlVerschiedenerTeile do Mltplztt[j] := op(2,op(j,liste)); od; H := H + (n!/mul(Mltplztt[j]!,j=1..ZahlVerschiedenerTeile)) * 2^n; od; print(n,H); end proc;
  • Mathematica
    CoefficientList[Exp[2 x/(1 - 2 x)] + O[x]^21, x]*Range[0, 20]!
    (* or: *)
    a[0] = 1; a[n_] := 2^n*n!*Hypergeometric1F1[n + 1, 2, 1]/E;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 10 2017 *)

Formula

a(n) = 2^n*A000262(n) = 2^n*n!*Sum_{k=0..n} C(n-1,k)/(k+1)!. - Paul Barry, Apr 28 2007
With p(n) = the number of integer partitions of n, d(i) = the number of different parts of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, sum_{i=1}^{p(n)} = sum over i and prod_{j=1}^{d(i)} = product over j one has: a(n)=sum_{i=1}^{p(n)} n!/(prod_{j=1}^{d(i)} m(i, j)!) * 2^(n)
E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - 2*x/(2*x + (k+1)*(1-2*x)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 09 2013
E.g.f.: E(0) - 1, where E(k) = 2 + 2*x/((2*k+1)*(1-2*x) - 2*x/E(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Dec 31 2013

Extensions

Edited by N. J. A. Sloane, May 06 2008, at the suggestion of Joerg Arndt

A255969 E.g.f.: 1/Product_{k>=1} (1-x^k)^(x^k).

Original entry on oeis.org

1, 0, 2, 3, 44, 90, 2394, 6720, 202544, 1041768, 27369000, 170418600, 5835999432, 41711464080, 1489935696144, 14980499777880, 519279726915840, 5837621201012160, 232228922844775104, 2946339663605953920, 122979308145781345920, 1869847203939341074560
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 12 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(x^k),{k,1,nmax}],{x,0,nmax}],x] * Range[0, nmax]!
    nmax=20; CoefficientList[Series[Exp[Sum[1/(k*(1/x^(k+1)-1)),{k,1,nmax}]],{x,0,nmax}],x] * Range[0,nmax]!

Formula

log(a(n)) ~ 2*sqrt(n).

A256105 a(n) = [x^n] 2^(2*n) / Product_{k>=1} (1-x^k)^(2^(-k)).

Original entry on oeis.org

1, 2, 10, 36, 166, 556, 2724, 9000, 41542, 153164, 657644, 2325816, 11020508, 38006264, 164662664, 634362320, 2695771462, 9775537676, 43527018396, 156855914904, 687387270260, 2605392165928, 10799896586616, 40214700074800, 178809945153820, 657023566793400
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 14 2015

Keywords

Comments

Limit n->infinity a(n)^(1/n) = 4.

Crossrefs

Programs

  • Mathematica
    Table[2^(2*n) * SeriesCoefficient[Product[1/(1-x^k)^(2^(-k)),{k,1,n}],{x,0,n}], {n,0,30}]
    Table[4^n * (CoefficientList[Series[Exp[Sum[x^k/(2*k*(1-x^k/2)),{k,1,n}]],{x,0,n}],x])[[n+1]],{n,0,30}] (* faster *)

A334827 The number of oriented star-like and star trees with n arcs.

Original entry on oeis.org

4, 17, 66, 221, 688, 2034, 5788, 15998, 43192, 114496, 298712, 769340, 1959064, 4940761, 12354210, 30660947, 75583868, 185208833, 451356846, 1094522547, 2642121008, 6351335083, 15208854510, 36288478177, 86295204732, 204571273167, 483532711338, 1139738858221
Offset: 3

Views

Author

R. J. Mathar, Jun 09 2020

Keywords

Examples

			a(6)=221 counts 132 oriented star-like trees with 3 rays and 6 arcs, 62 with 4 rays and 6 arcs, 20 with 5 rays and 6 arcs, and 7 star trees. In the illustrations in A000238 [Mathar] this is the same as 48 (shape 2) + 64 (shape 3) + 20 (shape 4) +32 (shape 7) + 30 (shape 8) +20 (shape 10) + 7 (shape 11).
		

Crossrefs

Cf. A000238 (oriented trees), A051437 (linear oriented trees), A209406 (star-like oriented by number of arcs and rays), A004250 (undirected edges).

Formula

a(n) = A034899(n) -2^(n+1) = Sum_{k>=3} A209406(n,k).
Previous Showing 11-19 of 19 results.