A104500
Number of different groupings among the hierarchical orderings of n unlabeled elements.
Original entry on oeis.org
1, 4, 11, 35, 98, 294, 832, 2401, 6774, 19137, 53466, 148994, 412233, 1136383, 3116654, 8515706, 23172455, 62836916, 169801824, 457406173, 1228382159, 3289493887, 8784935160, 23400668297, 62179339101, 164832960183, 435978612329, 1150673925933, 3030701471118
Offset: 1
Let * denote an element, let : denote separator among different levels within a hierarchy, let | denote a separator between different hierarchies. Furthermore, the braces {} indicate a group. For n=3 one has a(3) = 11 because
{***}, {*|*|*}, {*}{*}{*}, {*:*:*}, {*:**}, {*|**}, {*:*|*}, {*:*}{*}, {*|*}{*}, {**:*}, {*}{**}.
-
etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=numtheory[divisors](j)) *b(n-j), j=1..n)/n) end end: b:= etr(n-> 2^(n-1)): a:= etr(b): seq(a(n), n=1..30); # Alois P. Heinz, Apr 21 2012
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[Function[{n}, 2^(n-1)]]; a = etr[b]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
A158099
Euler transform of square powers of 2: [2,2^4,2^9,...,2^(n^2),...].
Original entry on oeis.org
1, 2, 19, 548, 66749, 33695574, 68787981855, 563088066184424, 18447871299903970005, 2417888543453357864445634, 1267655436282309648681395304255, 2658458526916981532120588021462151100, 22300750515466692968838881088968809185127601
Offset: 0
G.f.: A(x) = 1 + 2*x + 19*x^2 + 548*x^3 + 66749*x^4 +...
A(x) = 1/[(1-x)^2*(1-x^2)^(2^4)*(1-x^3)^(2^9)*(1-x^4)^(2^16)*...].
-
with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= etr(n->2^(n^2)):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 03 2012
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Function[{n}, 2^(n^2)]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
-
a(n)=polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^(2^(k^2))),n)
-
{a(n)=polcoeff(exp(sum(m=1,n,sumdiv(m,d,d*2^(d^2))*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Oct 18 2009
A261043
Number of multisets of nonempty words with a total of n letters over binary alphabet such that all letters occur at least once in the multiset.
Original entry on oeis.org
0, 0, 3, 14, 49, 148, 427, 1170, 3150, 8288, 21562, 55368, 140998, 355854, 892014, 2220856, 5497483, 13533264, 33150801, 80825768, 196218139, 474423934, 1142756063, 2742781794, 6561049181, 15645058210, 37194447065, 88174246904, 208463588035, 491585765888
Offset: 0
-
CoefficientList[Series[Product[1/(1-x^k)^(2^k), {k, 1, 30}] - 2*Product[1/(1 - x^k), {k, 1, 30}] + 1, {x, 0, 30}], x]
(* Second program: *)
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^# &]*A[n - j, k], {j, 1, n}]/n];
T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
a[n_] := T[n, 2];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz in A257740 *)
A104525
The number of hierarchical orderings among the parts of the integer partitions of the integer n.
Original entry on oeis.org
1, 4, 12, 40, 123, 395, 1227, 3851, 11944, 37032, 114144, 351040, 1075316, 3285398, 10007731, 30409157, 92169561, 278738219, 841132013, 2533138770, 7614144053, 22845435104, 68427663680, 204623945617, 610951554377, 1821438443615, 5422608839874, 16121857331124
Offset: 1
Let * denote an element, let : denote separator among different levels within a hierarchy, let | denote a separator between different hierarchies. Furthermore, the braces {} indicate a frame. For n=3 one has a(3) = 12 because:
{*:**}, {*:*}:{*}, {*}:{**}, {*:*:*}, {*}:{*}:{*}, {**}|{*}, {*}|{*:*}, {*}|{*}|{*}, {**}:{*}, {*}:{*:*}, {*}:{*}|{*}, {***}.
-
We can use combstruct to actually construct the structures A104525(n). %1 := Sequence(Set(Set(Z))).
with(combinat): with (numtheory): b:= proc(n) local k; option remember; `if`(n=0, 1, add (numbpart(k) * b(n-k), k=1..n)) end: a:= proc(n) option remember; `if` (n=0, 1, add (add (d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq (a(n), n=1..30); # Alois P. Heinz, Feb 02 2009
-
max = 30; A055887 = CoefficientList[1/(2 - 1/QPochhammer[x, x]) + O[x]^(max + 1), x] ; s = 1/Product[(1 - x^n)^A055887[[n + 1]], {n, 1, max}] + O[x]^max; CoefficientList[s, x] // Rest (* Jean-François Alcover, Jan 10 2016 *)
A347011
Euler transform of j-> ceiling(2^(j-2)).
Original entry on oeis.org
1, 1, 2, 4, 9, 19, 43, 93, 207, 453, 999, 2185, 4796, 10470, 22871, 49815, 108427, 235515, 511074, 1107248, 2396299, 5179169, 11181877, 24113939, 51949572, 111801422, 240381703, 516355235, 1108186951, 2376314763, 5091422730, 10900063776, 23317805916
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
b(n-i*j, i-1)*binomial(ceil(2^(i-2))+j-1, j), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
ceil(2^(d-2)), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..35);
-
CoefficientList[Series[1/(1-x) * Product[1/(1 - x^k)^(2^(k-2)), {k, 2, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 11 2021 *)
A104533
E.g.f.: exp(2x/(1-2x)).
Original entry on oeis.org
1, 2, 12, 104, 1168, 16032, 259264, 4817024, 100954368, 2353435136, 60355677184, 1687701792768, 51077784506368, 1662782678736896, 57917727119818752, 2148722382829027328, 84569896954751942656, 3518839711497761980416, 154306731918073225019392
Offset: 0
Let "a_i" and "b_j" be elements situated in the classes A and B with _i and _j as labels. Let : denote a separator among levels (ranks). Let | denote a separator among groups. E.g., a_1:b_2|b_1 is a hierarchy composed of two groups which contain three elements in total.
a(2) = 12 from b_2:b_1, b_2:a_1, b_2|b_1, a_1:a_2, b_2:a_1, a_1|a_2, a_1:b_2, a_2:a_1, b_1:a_2, a_2:b_1, b_1|a_2, b_2:b_1.
-
SetSeqUnnL := [T, {T=Set(S,card>=1), S=Sequence(U,card>=1), U=Union(a,b),a=Atom, b=Atom},labeled]; seq(count(SetSeqUnnL,size=j),j=1..20);
A104533 := proc(n::integer) local i,j,prttnlst,prttn,liste,ZahlVerschiedenerTeile,H,Mltplztt; Mltplztt:=vector[1000]; prttnlst:=partition(n); H := 0; for i from 1 to nops(prttnlst) do prttn := prttnlst[i]; liste := convert(prttn,multiset); ZahlVerschiedenerTeile := nops(liste); for j from 1 to ZahlVerschiedenerTeile do Mltplztt[j] := op(2,op(j,liste)); od; H := H + (n!/mul(Mltplztt[j]!,j=1..ZahlVerschiedenerTeile)) * 2^n; od; print(n,H); end proc;
-
CoefficientList[Exp[2 x/(1 - 2 x)] + O[x]^21, x]*Range[0, 20]!
(* or: *)
a[0] = 1; a[n_] := 2^n*n!*Hypergeometric1F1[n + 1, 2, 1]/E;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 10 2017 *)
A255969
E.g.f.: 1/Product_{k>=1} (1-x^k)^(x^k).
Original entry on oeis.org
1, 0, 2, 3, 44, 90, 2394, 6720, 202544, 1041768, 27369000, 170418600, 5835999432, 41711464080, 1489935696144, 14980499777880, 519279726915840, 5837621201012160, 232228922844775104, 2946339663605953920, 122979308145781345920, 1869847203939341074560
Offset: 0
-
nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(x^k),{k,1,nmax}],{x,0,nmax}],x] * Range[0, nmax]!
nmax=20; CoefficientList[Series[Exp[Sum[1/(k*(1/x^(k+1)-1)),{k,1,nmax}]],{x,0,nmax}],x] * Range[0,nmax]!
A256105
a(n) = [x^n] 2^(2*n) / Product_{k>=1} (1-x^k)^(2^(-k)).
Original entry on oeis.org
1, 2, 10, 36, 166, 556, 2724, 9000, 41542, 153164, 657644, 2325816, 11020508, 38006264, 164662664, 634362320, 2695771462, 9775537676, 43527018396, 156855914904, 687387270260, 2605392165928, 10799896586616, 40214700074800, 178809945153820, 657023566793400
Offset: 0
-
Table[2^(2*n) * SeriesCoefficient[Product[1/(1-x^k)^(2^(-k)),{k,1,n}],{x,0,n}], {n,0,30}]
Table[4^n * (CoefficientList[Series[Exp[Sum[x^k/(2*k*(1-x^k/2)),{k,1,n}]],{x,0,n}],x])[[n+1]],{n,0,30}] (* faster *)
A334827
The number of oriented star-like and star trees with n arcs.
Original entry on oeis.org
4, 17, 66, 221, 688, 2034, 5788, 15998, 43192, 114496, 298712, 769340, 1959064, 4940761, 12354210, 30660947, 75583868, 185208833, 451356846, 1094522547, 2642121008, 6351335083, 15208854510, 36288478177, 86295204732, 204571273167, 483532711338, 1139738858221
Offset: 3
a(6)=221 counts 132 oriented star-like trees with 3 rays and 6 arcs, 62 with 4 rays and 6 arcs, 20 with 5 rays and 6 arcs, and 7 star trees. In the illustrations in A000238 [Mathar] this is the same as 48 (shape 2) + 64 (shape 3) + 20 (shape 4) +32 (shape 7) + 30 (shape 8) +20 (shape 10) + 7 (shape 11).
Cf.
A000238 (oriented trees),
A051437 (linear oriented trees),
A209406 (star-like oriented by number of arcs and rays),
A004250 (undirected edges).
Comments