cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A053332 a(n) contains n digits (either '4' or '7') and is divisible by 2^n.

Original entry on oeis.org

4, 44, 744, 7744, 47744, 447744, 4447744, 44447744, 444447744, 4444447744, 74444447744, 474444447744, 4474444447744, 44474444447744, 444474444447744, 7444474444447744, 77444474444447744, 477444474444447744
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{4,7},n],Divisible[#,2^n]&], {n,20}]] (* Harvey P. Dale, Jul 25 2011 *)

Formula

a(n) = a(n-1)+10^(n-1)*(4+3*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 7.

A053338 a(n) contains n digits (either '6' or '9') and is divisible by 2^n.

Original entry on oeis.org

6, 96, 696, 9696, 69696, 669696, 6669696, 96669696, 696669696, 9696669696, 69696669696, 969696669696, 9969696669696, 69969696669696, 969969696669696, 9969969696669696, 99969969696669696, 999969969696669696
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Select[FromDigits/@Tuples[{6,9},n],Mod[#,2^n]==0&],{n,20}]//Flatten (* Harvey P. Dale, Sep 15 2023 *)

Formula

a(n)=a(n-1)+10^(n-1)*(6+3*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 6, if not then n-th term begins with a 9.

A053376 a(n) contains n digits (either '1' or '8') and is divisible by 2^n.

Original entry on oeis.org

8, 88, 888, 1888, 81888, 181888, 8181888, 18181888, 118181888, 8118181888, 88118181888, 888118181888, 8888118181888, 88888118181888, 888888118181888, 1888888118181888, 81888888118181888, 181888888118181888
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Select[FromDigits/@Tuples[{1,8},n],Divisible[#,2^n]&],{n,20}]// Flatten (* Harvey P. Dale, Aug 20 2017 *)

Formula

a(n)=a(n-1)+10^(n-1)*(8-7*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with an 8, if not then n-th term begins with a 1.

A053380 a(n) contains n digits (either '8' or '9') and is divisible by 2^n.

Original entry on oeis.org

8, 88, 888, 9888, 89888, 989888, 9989888, 89989888, 989989888, 8989989888, 98989989888, 898989989888, 8898989989888, 98898989989888, 998898989989888, 8998898989989888, 98998898989989888, 898998898989989888
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Formula

a(n)=a(n-1)+10^(n-1)*(8+[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with an 8, if not then n-th term begins with a 9.

A140288 The least n-digit multiple of 5^n using the decimal digits {1, 2, 3, 4, 5} exclusively.

Original entry on oeis.org

5, 25, 125, 3125, 53125, 453125, 4453125, 14453125, 314453125, 2314453125, 22314453125, 122314453125, 4122314453125, 44122314453125, 444122314453125, 4444122314453125, 54444122314453125, 254444122314453125, 1254444122314453125, 21254444122314453125
Offset: 1

Views

Author

Michel Criton (mcriton(AT)wanadoo.fr), May 24 2008

Keywords

Examples

			a(5) = 53125 = 17 * 5^5.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {v = vector(nn); v[1] = 5; for(k = 2, nn, j = 1; while((j*10^(k-1) + v[k-1]) % 5^k > 0, j++); v[k] = j*10^(k-1) + v[k-1]); for(k = 1, nn, print1(v[k], ", "));} \\ Jinyuan Wang, Aug 27 2019

Formula

To obtain the (n+1)-th term, write the n-th term as k * 5^n. Multiply k by a multiple of 2^n to get a multiple of 5. Add the multiplicator of 2^n to the left of the n-th term.

Extensions

More terms from Alois P. Heinz, Apr 05 2017

A050625 Divisible by 3^k (where k is digit length of a(n)).

Original entry on oeis.org

3, 6, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 135, 162, 189, 216, 243, 270, 297, 324, 351, 378, 405, 432, 459, 486, 513, 540, 567, 594, 621, 648, 675, 702, 729, 756, 783, 810, 837, 864, 891, 918, 945, 972, 999, 1053, 1134, 1215, 1296, 1377, 1458
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[3^n*Range[Ceiling[10^(n-1)/3^n],Floor[(10^n-1)/3^n]],{n,4}]] (* Harvey P. Dale, Feb 26 2015 *)
    Select[Range[1500],Mod[#,3^IntegerLength[#]]==0&] (* Harvey P. Dale, Apr 04 2020 *)

A053313 a(n) contains n digits (either '2' or '9') and is divisible by 2^n.

Original entry on oeis.org

2, 92, 992, 2992, 92992, 292992, 2292992, 22292992, 222292992, 2222292992, 22222292992, 922222292992, 9922222292992, 29922222292992, 929922222292992, 9929922222292992, 99929922222292992, 999929922222292992
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Table[FromDigits/@Tuples[{2,9},n],{n,18}]],Divisible[ #,2^IntegerLength[ #]]&] (* Harvey P. Dale, Feb 07 2015 *)

Formula

a(n)=a(n-1)+10^(n-1)*(2+7*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 2, if not then n-th term begins with a 7.

A053314 a(n) contains n digits (either '1' or '4') and is divisible by 2^n.

Original entry on oeis.org

4, 44, 144, 4144, 14144, 414144, 1414144, 41414144, 441414144, 1441414144, 11441414144, 411441414144, 4411441414144, 44411441414144, 444411441414144, 1444411441414144, 41444411441414144, 441444411441414144
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 4:
    for n from 2 to 100 do
       if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+4*10^(n-1)
       else A[n]:= A[n-1]+10^(n-1)
    fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Oct 27 2019
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[Divisible[a,2^(n+1)],4*10^IntegerLength[a]+ a, 10^IntegerLength[ a]+a]}; NestList[nxt,{1,4},20][[All,2]] (* Harvey P. Dale, Oct 30 2022 *)

Formula

a(n) = a(n-1) + 10^(n-1)*(4 - 3*(a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 1.

Extensions

Formula corrected by Robert Israel, Oct 27 2019

A053315 a(n) contains n digits (either '4' or '5') and is divisible by 2^n.

Original entry on oeis.org

4, 44, 544, 4544, 44544, 444544, 4444544, 54444544, 454444544, 5454444544, 45454444544, 545454444544, 5545454444544, 55545454444544, 555545454444544, 4555545454444544, 44555545454444544, 544555545454444544
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 4:
    for n from 2 to 100 do
       if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+4*10^(n-1)
       else A[n]:= A[n-1]+5*10^(n-1)
    fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Oct 27 2019

Formula

a(n) = a(n-1) + 10^(n-1)*(4 + (a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 5.

Extensions

Formula corrected by Robert Israel, Oct 27 2019

A053333 a(n) contains n digits (either '4' or '9') and is divisible by 2^n.

Original entry on oeis.org

4, 44, 944, 4944, 94944, 994944, 4994944, 94994944, 494994944, 9494994944, 49494994944, 449494994944, 9449494994944, 99449494994944, 499449494994944, 9499449494994944, 49499449494994944, 949499449494994944
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:=Module[{fd=If[Mod[a,2^(n+1)]==0,4,9]},{n+1,fd 10^IntegerLength[a]+a}]; NestList[ nxt,{1,4},20][[;;,2]] (* Harvey P. Dale, Jul 14 2023 *)

Formula

a(n)=a(n-1)+10^(n-1)*(4+5*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 9.
Previous Showing 11-20 of 29 results. Next