cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A245566 Decimal expansion of a constant related to A007563.

Original entry on oeis.org

4, 1, 8, 9, 6, 1, 0, 9, 5, 8, 3, 9, 3, 8, 2, 6, 9, 6, 5, 5, 2, 7, 0, 3, 6, 4, 5, 4, 5, 2, 4, 0, 4, 4, 2, 7, 5, 9, 4, 2, 3, 8, 9, 9, 2, 5, 9, 1, 5, 9, 3, 6, 5, 9, 4, 1, 3, 2, 8, 5, 7, 7, 4, 2, 5, 9, 8, 9, 8, 7, 0, 6, 4, 9, 1, 2, 0, 6, 1, 9, 9, 0, 1, 7, 6, 0, 7, 4, 0, 6, 3, 9, 5, 8, 9, 6, 8, 5, 6, 3, 3, 8, 2, 5, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 26 2014

Keywords

Examples

			4.18961095839382696552703645452404427594238992591593659413285774...
		

Crossrefs

Formula

Equals lim n -> infinity A007563(n)^(1/n).
Equals lim n -> infinity A035052(n)^(1/n).
Equals lim n -> infinity A035053(n)^(1/n).
Equals lim n -> infinity A134955(n)^(1/n).

A304968 Number of labeled hypertrees spanning some subset of {1,...,n}, with singleton edges allowed.

Original entry on oeis.org

1, 2, 7, 48, 621, 12638, 351987, 12426060, 531225945, 26674100154, 1538781595999, 100292956964456, 7288903575373509, 584454485844541718, 51256293341752583499, 4880654469385955209092, 501471626403154217825457, 55300894427785157597436786
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			The a(2) = 7 hypertrees are the following:
{}
{{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A134958 with b(1)=1.
    b(n)=if(n<2, n>=0, 2^n*sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018

Formula

Binomial transform of b(1) = 1, b(n) = A134958(n) otherwise.

A304970 Number of unlabeled hypertrees with up to n vertices and without singleton edges.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 39, 98, 263, 759, 2299, 7259, 23649, 79057, 269629, 935328, 3290260, 11714285, 42139053, 152963037, 559697097, 2062574000, 7649550572, 28534096988, 106994891146, 403119433266, 1525466082179, 5795853930652, 22102635416716, 84579153865570
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 8 hypertrees are the following:
{}
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)))/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

Partial sums of A035053 if we assume A035053(1) = 0.
a(n) = A304937(n) + 1 for n > 0.

A305028 Number of unlabeled blobs spanning n vertices without singleton edges.

Original entry on oeis.org

1, 0, 1, 2, 10, 128
Offset: 0

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

A blob is a connected antichain of finite sets that cannot be capped by a hypertree with more than one branch.

Examples

			Non-isomorphic representatives of the a(4) = 10 blobs:
  {{1,2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

A318601 Triangle read by rows: T(n,k) is the number of hypertrees on n unlabeled nodes with k edges, (0 <= k < n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 3, 3, 0, 1, 2, 6, 7, 6, 0, 1, 3, 9, 17, 18, 11, 0, 1, 3, 13, 30, 51, 44, 23, 0, 1, 4, 17, 53, 109, 148, 117, 47, 0, 1, 4, 23, 79, 213, 372, 443, 299, 106, 0, 1, 5, 28, 119, 370, 827, 1276, 1306, 793, 235
Offset: 1

Views

Author

Andrew Howroyd, Aug 29 2018

Keywords

Comments

Equivalently, the number of connected graphs on n unlabeled nodes with k blocks where every block is a complete graph.
Let R(x,y) be the g.f. of A318602 and S(x,y) be the g.f. of A318607. Then the number of hypertrees rooted at a vertex is R(x,y), the number rooted at an edge is y*(S(x,y) - R(x,y)) and the number rooted at a directed edge is y*S(x,y)*R(x,y). The dissymmetry theorem for trees gives that the number of unlabeled objects (this sequence) is the number rooted at a vertex plus the number rooted at an edge minus the number rooted at a directed edge.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1,  2;
  0, 1, 2,  3,  3;
  0, 1, 2,  6,  7,   6;
  0, 1, 3,  9, 17,  18,  11;
  0, 1, 3, 13, 30,  51,  44,  23;
  0, 1, 4, 17, 53, 109, 148, 117,  47;
  0, 1, 4, 23, 79, 213, 372, 443, 299, 106;
  ...
Case n=4: There are 4 possible graphs which are the complete graph on 4 nodes which has 1 block, a triangle joined to a single vertex which has 2 blocks and two trees which have 3 blocks. Row 4 is then 0, 1, 1, 2.
    o---o       o---o    o---o     o--o--o
    | X |      / \       |            |
    o---o     o---o      o---o        o
.
Case n=5, k=3: The following illustrates how the dissymmetry thereom for each unlabeled hypertree gives 1 = vertex rooted + edge (block) rooted - directed edge (vertex of block) rooted.
      o---o
     / \          1 = 3 + 2 - 4
    o---o---o
.
      o   o
     / \ /        1 = 3 + 2 - 4
    o---o---o
.
      o   o
     / \ / \      1 = 4 + 3 - 6
    o---o   o
.
		

Crossrefs

Rightmost diagonal is A000055 (unlabeled trees).
Row sums are A035053.

Programs

  • PARI
    \\ here b(n) is A318602 as vector of polynomials.
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerMT(y*EulerMT(v)))); v}
    G(n)={my(u=b(n)); apply(p->Vecrev(p), Vec(y*Ser(EulerMT(u))*(1-x*Ser(u)) + (1 - y)*Ser(u)))}
    { my(T=G(10)); for(n=1, #T, print(T[n])) }

Formula

G.f.: R(x,y) + y*(S(x,y) - R(x,y)) - y*S(x,y)*R(x,y) where R(x,y) is the g.f. of A318602 and S(x,y) is the g.f. of A318607.

A321994 Number of different chromatic symmetric functions of hypertrees on n vertices.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 59, 165
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
Stanley conjectured that the number of distinct chromatic symmetric functions of trees with n vertices is equal to A000055, i.e., the chromatic symmetric function distinguishes between trees. It has been proven for trees with up to 25 vertices. If it is true in general, does the chromatic symmetric function also distinguish between hypertrees, meaning this sequence would be equal to A035053?

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    density[c_]:=Total[(Length[#]-1&)/@c]-Length[Union@@c];
    hyall[n_]:=Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Or[SubsetQ[#1,#2],Length[Intersection[#1,#2]]>1]&],And[Union@@#==Range[n],Length[csm[#]]==1,density[#]==-1]&];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    Table[Length[Union[chromSF/@If[n==1,{{{1}}},hyall[n]]]],{n,5}]

A304937 Number of unlabeled nonempty hypertrees with up to n vertices and no singleton edges.

Original entry on oeis.org

1, 0, 1, 3, 7, 16, 38, 97, 262, 758, 2298, 7258, 23648, 79056, 269628, 935327, 3290259, 11714284, 42139052, 152963036, 559697096, 2062573999, 7649550571, 28534096987, 106994891145, 403119433265, 1525466082178, 5795853930651, 22102635416715, 84579153865569
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			Non-isomorphic representatives of the a(5) = 16 hypertrees are the following:
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,2,3,4,5}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,5},{2,3,4,5}}
{{1,2,5},{3,4,5}}
{{1,2},{2,5},{3,4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1,4},{2,5},{3,4,5}}
{{1,5},{2,5},{3,4,5}}
{{1,3},{2,4},{3,5},{4,5}}
{{1,4},{2,5},{3,5},{4,5}}
{{1,5},{2,5},{3,5},{4,5}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)) - x)/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

a(n) = a(n-1) + A035053(n) for n > 1, a(n) = 1 - n for n < 2.

A304939 Number of labeled nonempty hypertrees (connected antichains with no cycles) spanning some subset of {1,...,n} without singleton edges.

Original entry on oeis.org

1, 0, 1, 7, 51, 506, 6843, 118581, 2504855, 62370529, 1788082153, 57997339632, 2099638691439, 83922479506503, 3670657248913385, 174387350448735877, 8942472292255441103, 492294103555090048458, 28958704109012732921523
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			The a(3) = 7 hypertrees are the following:
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A030019 with b(1)=0.
    b(n)=if(n<2, n==0, sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=if(n<1, n==0, sum(k=1, n, binomial(n, k)*b(k))); \\ Andrew Howroyd, Aug 27 2018

Formula

a(n) = A305004(n) - 1 for n > 0. - Andrew Howroyd, Aug 27 2018

A305004 Number of labeled hypertrees (connected acyclic antichains) spanning some subset of {1,...,n} without singleton edges.

Original entry on oeis.org

1, 1, 2, 8, 52, 507, 6844, 118582, 2504856, 62370530, 1788082154, 57997339633, 2099638691440, 83922479506504, 3670657248913386, 174387350448735878, 8942472292255441104, 492294103555090048459, 28958704109012732921524
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			The a(3) = 8 hypertrees:
{}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A030019 with b(1)=0.
    b(n)=if(n<2, n==0, sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018

Formula

a(n > 0) = A304939(n) + 1.
Binomial transform of A030019 if we assume A030019(1) = 0.

A326374 Irregular triangle read by rows where T(n,k) is the number of (d + 1)-uniform hypertrees spanning n + 1 vertices, where d = A027750(n,k).

Original entry on oeis.org

1, 3, 1, 16, 1, 125, 15, 1, 1296, 1, 16807, 735, 140, 1, 262144, 1, 4782969, 76545, 1890, 1, 100000000, 112000, 1, 2357947691, 13835745, 33264, 1, 61917364224, 1, 1792160394037, 3859590735, 270670400, 35135100, 720720, 1, 56693912375296, 1, 1946195068359375
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2019

Keywords

Comments

A hypertree is a connected hypergraph of density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices. A hypergraph is k-uniform if its edges all have size k. The span of a hypertree is the union of its edges.

Examples

			Triangle begins:
           1
           3          1
          16          1
         125         15          1
        1296          1
       16807        735        140          1
      262144          1
     4782969      76545       1890          1
   100000000     112000          1
  2357947691   13835745      33264          1
The T(4,2) = 15 hypertrees:
  {{1,4,5},{2,3,5}}
  {{1,4,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,4},{2,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,2,5},{3,4,5}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{1,3,4}}
  {{1,2,4},{3,4,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{1,4,5}}
		

Crossrefs

Programs

  • Maple
    T:= n-> seq(n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1), d=numtheory[divisors](n)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Aug 21 2019
  • Mathematica
    Table[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{n,10},{d,Divisors[n]}]

Formula

T(n, k) = n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1), where d = A027750(n, k).

Extensions

Edited by Peter Munn, Mar 05 2025
Previous Showing 21-30 of 35 results. Next