cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A035188 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 6.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 0, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 0, 2, 1, 3, 0, 1, 0, 2, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 2, 0, 2, 2, 2, 1, 1, 3, 0, 0, 2, 1, 0, 0, 2, 2, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 2, 0, 2, 1, 2, 0, 3, 2, 0, 0, 0, 2, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 24. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[6, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=6); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(6, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Oct 17 2022: (Start)
a(n) = Sum_{d|n} Kronecker(6, d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(5+2*sqrt(6)) / sqrt(6) = 0.935881... . (End)
Multiplicative with a(p^e) = 1 if Kronecker(6, p) = 0 (p = 2 or 3), a(p^e) = (1+(-1)^e)/2 if Kronecker(6, p) = -1 (p is in A038877), and a(p^e) = e+1 if Kronecker(6, p) = 1 (p is in A097934). - Amiram Eldar, Nov 20 2023

A035195 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 13.

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 0, 0, 3, 0, 0, 2, 1, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 4, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 13. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[13, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=13); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(13, d)); \\ Amiram Eldar, Nov 18 2023

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log((3+sqrt(13))/2)/sqrt(13) = 0.662735... . - Amiram Eldar, Oct 11 2022
From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(13, d).
Multiplicative with a(13^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(13, p) = -1 (p is in A038884), and a(p^e) = e+1 if Kronecker(13, p) = 1 (p is in A038883 \ {13}). (End)

A035199 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 17.

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 2, 0, 0, 5, 1, 2, 2, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 6, 0, 2, 0, 3, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 2, 0, 6, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 7, 0, 0, 2, 3, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 17. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[17, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=17); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(17, d)); \\ Amiram Eldar, Nov 18 2023

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(4+sqrt(17))/sqrt(17) = 1.016084... . - Amiram Eldar, Oct 11 2022
From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(17, d).
Multiplicative with a(17^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(17, p) = -1 (p is in A038890), and a(p^e) = e+1 if Kronecker(17, p) = 1 (p is in A038889 \ {17}). (End)

A035192 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 10.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 0, 1, 3, 1, 0, 2, 2, 0, 2, 1, 0, 3, 0, 1, 0, 0, 0, 2, 1, 2, 4, 0, 0, 2, 2, 1, 0, 0, 0, 3, 2, 0, 4, 1, 2, 0, 2, 0, 3, 0, 0, 2, 1, 1, 0, 2, 2, 4, 0, 0, 0, 0, 0, 2, 0, 2, 0, 1, 2, 0, 2, 0, 0, 0, 2, 3, 0, 2, 2, 0, 0, 4, 2, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 40. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[10, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=10); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(10, d)); \\ Amiram Eldar, Nov 18 2023

Formula

From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(10, d).
Multiplicative with a(p^e) = 1 if Kronecker(10, p) = 0 (p = 2 or 5), a(p^e) = (1+(-1)^e)/2 if Kronecker(10, p) = -1 (p is in A038880), and a(p^e) = e+1 if Kronecker(10, p) = 1 (p is in A097955).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(sqrt(10)+3)/sqrt(10) = 1.1500865228... . (End)

A035194 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 12.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 2, 1, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 2, 0, 0, 0, 0, 2, 0, 2, 2, 1, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 2, 1, 2, 2, 1, 0, 0, 2, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 12. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[12, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=12); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(12, d)); \\ Amiram Eldar, Nov 18 2023

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2+sqrt(3))/sqrt(3) = 0.760345... (A196530). - Amiram Eldar, Oct 11 2022
From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(12, d).
Multiplicative with a(p^e) = 1 if Kronecker(12, p) = 0 (p = 2 or 3), a(p^e) = (1+(-1)^e)/2 if Kronecker(12, p) = -1 (p is in A003630), and a(p^e) = e+1 if Kronecker(12, p) = 1 (p is in A097933). (End)

A035210 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 28.

Original entry on oeis.org

1, 1, 2, 1, 0, 2, 1, 1, 3, 0, 0, 2, 0, 1, 0, 1, 0, 3, 2, 0, 2, 0, 0, 2, 1, 0, 4, 1, 2, 0, 2, 1, 0, 0, 0, 3, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 1, 1, 0, 0, 2, 4, 0, 1, 4, 2, 2, 0, 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 2, 2, 0, 0, 0, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 28. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[28, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 28); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(28, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(28, d).
Multiplicative with a(p^e) = 1 if Kronecker(28, p) = 0 (p = 2 or 7), a(p^e) = (1+(-1)^e)/2 if Kronecker(28, p) = -1 (p is in A003632), and a(p^e) = e+1 if Kronecker(28, p) = 1 (p is in A296934).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(3*sqrt(7)+8)/sqrt(7) = 1.046454884756... . (End)

A035211 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 29.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0, 3, 0, 0, 2, 1, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 1, 4, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 29. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[29, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 29); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(29, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(29, d).
Multiplicative with a(29^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(29, p) = -1 (p is in A038902), and a(p^e) = e+1 if Kronecker(29, p) = 1 (p is in A191022).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log((sqrt(29)+5)/2)/sqrt(29) = 0.611766289562... . (End)

A035219 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 37.

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 2, 0, 3, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 2, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 4, 0, 0, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 37. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[37, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
  • PARI
    my(m = 37); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(37, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(37, d).
Multiplicative with a(37^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(37, p) = -1 (p is in A038914), and a(p^e) = e+1 if Kronecker(37, p) = 1 (p is in A191027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(sqrt(37)+6)/sqrt(37) = 0.819292168725... . (End)

A035215 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 33.

Original entry on oeis.org

1, 2, 1, 3, 0, 2, 0, 4, 1, 0, 1, 3, 0, 0, 0, 5, 2, 2, 0, 0, 0, 2, 0, 4, 1, 0, 1, 0, 2, 0, 2, 6, 1, 4, 0, 3, 2, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 5, 1, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 4, 0, 7, 0, 2, 2, 6, 0, 0, 0, 4, 0, 4, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 33. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[33, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 33); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(33, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(33, d).
Multiplicative with a(p^e) = 1 if Kronecker(33, p) = 0 (p = 3 or 11), a(p^e) = (1+(-1)^e)/2 if Kronecker(33, p) = -1 (p is in A038908), and a(p^e) = e+1 if Kronecker(33, p) = 1 (p is in A038907 \ {3, 11}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(4*sqrt(33)+23)/sqrt(33) = 1.332797188186... . (End)

A020669 Numbers of form x^2 + 5 y^2.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 14, 16, 20, 21, 24, 25, 29, 30, 36, 41, 45, 46, 49, 54, 56, 61, 64, 69, 70, 80, 81, 84, 86, 89, 94, 96, 100, 101, 105, 109, 116, 120, 121, 125, 126, 129, 134, 141, 144, 145, 149, 150, 161, 164, 166, 169, 174, 180, 181, 184, 189, 196, 201, 205, 206, 214, 216
Offset: 1

Views

Author

Keywords

Comments

In other words, numbers represented by quadratic form with Gram matrix [1,0; 0,5].
x^2 + 5 y^2 has discriminant -20.
A positive integer n is in this sequence if and only if the p-adic order ord_p(n) of n is even for any prime p with floor(p/10) odd, and the number of prime divisors p == 3 or 7 (mod 20) of n with ord_p(n) odd has the same parity with ord_2(n). - Zhi-Wei Sun, Mar 24 2018

References

  • H. Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. See pp. 3, 4 and later chapters.
  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989. See Eq. (2.22), p. 33.

Crossrefs

For primes see A033205.
For the properly represented numbers see A344231.

Programs

  • Magma
    [n: n in [0..216] | NormEquation(5, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
  • Maple
    select(t -> [isolve(x^2+5*y^2=t)]<>[], [$0..1000]); # Robert Israel, May 11 2016
  • Mathematica
    formQ[n_] := Reduce[x >= 0 && y >= 0 && n == x^2 + 5 y^2, {x, y}, Integers] =!= False; Select[ Range[0, 300], formQ] (* Jean-François Alcover, Sep 20 2011 *)
    mx = 300;
    limx = Sqrt[mx]; limy = Sqrt[mx/5];
    Select[
    Union[
    Flatten[
    Table[x^2 + 5*y^2, {x, 0, limx}, {y, 0, limy}]
           ]
         ], # <= mx &
    ] (* T. D. Noe, Sep 20 2011 *)

Formula

List contains 0 and all positive n such that 2*A035170(n) = A028586(2n) is nonzero. - Michael Somos, Oct 21 2006

Extensions

Entry revised by N. J. A. Sloane, Sep 20 2012
Previous Showing 11-20 of 28 results. Next