cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A035339 5th column of Wythoff array.

Original entry on oeis.org

8, 29, 42, 63, 84, 97, 118, 131, 152, 173, 186, 207, 228, 241, 262, 275, 296, 317, 330, 351, 364, 385, 406, 419, 440, 461, 474, 495, 508, 529, 550, 563, 584, 605, 618, 639, 652, 673, 694, 707, 728, 741, 762, 783, 796, 817, 838, 851, 872, 885, 906, 927, 940, 961
Offset: 0

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1/phi^6 = A094214^6 = 0.05572809... . - Amiram Eldar, Mar 24 2025

Crossrefs

Column k of A035513: A003622 (k=1), A035336 (k=2), A035337 (k=3), A035338 (k=4), this sequence (k=5), A035340 (k=6).
Cf. A094214.

Programs

  • Maple
    t:= (1+sqrt(5))/2: [ seq(8*floor((n+1)*t)+5*n,n=0..80) ];
  • Mathematica
    a[n_] := 8 * Floor[n * GoldenRatio] + 5*(n-1); Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)

A035340 6th column of Wythoff array.

Original entry on oeis.org

13, 47, 68, 102, 136, 157, 191, 212, 246, 280, 301, 335, 369, 390, 424, 445, 479, 513, 534, 568, 589, 623, 657, 678, 712, 746, 767, 801, 822, 856, 890, 911, 945, 979, 1000, 1034, 1055, 1089, 1123, 1144, 1178, 1199, 1233, 1267, 1288, 1322, 1356, 1377, 1411, 1432
Offset: 0

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1/phi^7 = A094214^7 = 0.03444185... . - Amiram Eldar, Mar 24 2025

Crossrefs

Column k of A035513: A003622 (k=1), A035336 (k=2), A035337 (k=3), A035338 (k=4), A035339 (k=5), this sequence (k=6).
Cf. A094214.

Programs

  • Maple
    t:= (1+sqrt(5))/2: [ seq(13*floor((n+1)*t)+8*n,n=0..80) ];
  • Mathematica
    a[n_] := 13 * Floor[n * GoldenRatio] + 8*(n-1); Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)

A134570 Array T(n,k) by antidiagonals; T(n,k) = position in row n of k-th occurrence of the Fibonacci number F(2n+1) in A134566.

Original entry on oeis.org

2, 5, 1, 7, 4, 3, 10, 6, 11, 8, 13, 9, 16, 29, 21, 15, 12, 24, 42, 76, 55, 18, 14, 32, 63, 110, 199, 144, 20, 17, 37, 84, 165, 288, 521, 377, 23, 19, 45, 97, 220, 432, 754
Offset: 1

Views

Author

Clark Kimberling, Nov 02 2007

Keywords

Comments

(Row 1) = A001950, the upper Wythoff sequence (Row 2) = (Column 1 of Wythoff array) = A003622 (Row 3) = (Column 3 of Wythoff array) = A035337 (Row 4) = (Column 5 of Wythoff array) = A035339 Except for initial terms, the first two columns of A134570 are bisected Fibonacci and Lucas sequences, A001906 and A002878, resp. Row 1 is the ordered union of all even-numbered columns of the Wythoff array; and A134570 is a permutation of the positive integers.

Examples

			Northwest corner:
2 5 7 10 13 15 18 20 23 26
1 4 6 9 12 14
3 11 16 24 32 37
8 29 42 63 84 97
Row 1 consists of numbers k such that 1 is the least m for which {-m*tau}>{k*tau}, where tau=(1+sqrt(5))/2 and {} denotes fractional part.
		

Crossrefs

A095088 Fib100 primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with one and two final zeros.

Original entry on oeis.org

3, 11, 37, 71, 79, 113, 139, 181, 223, 257, 283, 359, 367, 401, 409, 443, 503, 571, 587, 613, 647, 757, 859, 977, 1019, 1087, 1163, 1181, 1223, 1231, 1291, 1307, 1367, 1409, 1451, 1511, 1553, 1579, 1613, 1621, 1663, 1697, 1723, 1867, 1901
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Intersection of A000040 and A035337. Cf. A095068.

Programs

  • Python
    from sympy import fibonacci, primerange
    def a(n):
        k=0
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    def ok(n): return str(a(n)).endswith("100")
    print([n for n in primerange(1, 2001) if ok(n)]) # Indranil Ghosh, Jun 08 2017

A357316 A distension of the Wythoff array by inclusion of intermediate rows. Square array A(n,k), n >= 0, k >= 0, read by descending antidiagonals. If S is the set such that Sum_{i in S} F_i is the Zeckendorf representation of n then A(n,k) = Sum_{i in S} F_{i+k-2}.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2, 1, 0, 3, 3, 3, 3, 2, 0, 5, 5, 5, 4, 3, 2, 0, 8, 8, 8, 7, 5, 4, 3, 0, 13, 13, 13, 11, 8, 6, 4, 3, 0, 21, 21, 21, 18, 13, 10, 7, 5, 3, 0, 34, 34, 34, 29, 21, 16, 11, 8, 6, 4, 0, 55, 55, 55, 47, 34, 26, 18, 13, 9, 6, 4
Offset: 0

Views

Author

Peter Munn, Sep 23 2022

Keywords

Comments

Note the Zeckendorf representation of 0 is taken to be the empty sum.
The Wythoff array A035513 is the subtable formed by rows 3, 11, 16, 24, 32, ... (A035337). If, instead, we use rows 2, 7, 10, 15, 20, ... (A035336) or 1, 4, 6, 9, 12, ... (A003622), we get the Wythoff array extended by 1 column (A287869) or 2 columns (A287870) respectively.
Similarly, using A035338 truncates by 1 column; and in general if S_k is column k of the Wythoff array then the rows here numbered by S_k form an array A_k that starts with column k-2 of the Wythoff array. (A_0 and A_1 are the 2 extended arrays mentioned above.) As every positive integer occurs exactly once in the Wythoff array, every row except row 0 of A(.,.) is a row of exactly one such A_k.
Columns 4 onwards match certain columns of the multiplication table for Knuth's Fibonacci (or circle) product (extended variant - see A135090 and formula below).
For k > 0, the first row to contain k is A348853(k).

Examples

			Example for n = 4, k = 3. The Zeckendorf representation of 4 is F_4 + F_2 = 3 + 1. So the values of i in the sums in the definition are 4 and 2; hence A(4,3) = Sum_{i = 2,4} F_{i+k-2} = F_{4+3-2} + F_{2+3-2} = F_5 + F_3 = 5 + 2 = 7.
Square array A(n,k) begins:
   n\k| 0   1    2    3    4    5    6
  ----+--------------------------------
   0  | 0   0    0    0    0    0    0  ...
   1* | 0   1    1    2    3    5    8  ...
   2  | 1   1    2    3    5    8   13  ...
   3  | 1   2    3    5    8   13   21  ...
   4* | 1   3    4    7   11   18   29  ...
   5  | 2   3    5    8   13   21   34  ...
   6* | 2   4    6   10   16   26   42  ...
   7  | 3   4    7   11   18   29   47  ...
   8  | 3   5    8   13   21   34   55  ...
   9* | 3   6    9   15   24   39   63  ...
  10  | 4   6   10   16   26   42   68  ...
  11  | 4   7   11   18   29   47   76  ...
  12* | 4   8   12   20   32   52   84  ...
  ...
The asterisked rows form the start of the extended Wythoff array (A287870).
		

Crossrefs

Columns, some differing initially: A005206 (1), A022342 (3), A026274 (4), A101345 (5), A101642 (6).
Rows: A000045 (1), A000204 (4).
Related to subtable A287870 as A130128 (as a square) is to A054582.
Other subtables: A035513, A287869.
See the comments for the relationship to A003622, A035336, A035337, A035338, A348853.
See the formula section for the relationship to A003714, A022342, A135090, A356874.

Programs

  • PARI
    A5206(m) = if(m>0,m-A5206(A5206(m-1)),0)
    A(n,k) = if(k==2,n, if(k==1,A5206(n), if(k==0,n-A5206(n), A(n,k-2)+A(n,k-1)))) \\ simple encoding of formulas, not efficient

Formula

For n >= 0, k >= 0 unless stated otherwise:
A(n,k) = A356874(floor(A003714(n)*2^(k-1))).
A(n,1) = A005206(n).
A(n,2) = n.
A(n,k+2) = A(n,k) + A(n,k+1).
A(A022342(n+1),k) = A(n,k+1).
For k >= 4, A(n,k) = A135090(n,A000045(k-2)).

A372302 Numbers k for which the Zeckendorf representation A014417(k) ends with "1001".

Original entry on oeis.org

6, 19, 27, 40, 53, 61, 74, 82, 95, 108, 116, 129, 142, 150, 163, 171, 184, 197, 205, 218, 226, 239, 252, 260, 273, 286, 294, 307, 315, 328, 341, 349, 362, 375, 383, 396, 404, 417, 430, 438, 451, 459, 472, 485, 493, 506, 519, 527, 540, 548, 561, 574, 582, 595, 603
Offset: 1

Views

Author

A.H.M. Smeets, Apr 25 2024

Keywords

Crossrefs

Tree of Zeckendorf subsequences of positive integers partitioned by their suffix part S (except initial term or offset in some cases). $ is the empty string. length(S) =
0 1 2 3 4 5 6 7
----------------------------------------------------------------------
$: 0: 00: 000: 0000: 00000: 000000:
100000: 0100000:
A035340 <------
10000:
1000: 01000:
A035338 <------
10: 010: 0010:
A035336 <------ A134861
1010: 01010:
A134863 <------
100: 0100:
A035337 <------
1: 01: 001: 0001:
1001: 01001:
A372302 <------
101: 0101:
A134860 <------
Suffixes 10^n, where ^ means n times repeated concatenation, are the (n+1)-th columns in the Wythoff array A083412 and A035513 (n >= 0).

Formula

Equals {A134859}\{A151915}.
a(n) = A134863(n) - 1 = A035338(n) + 1.
a(n) = a(n-1) + 8 + 5*A005614(n-2) = a(n-1) + F(6) + F(5)*A005614(n-2), n > 1, where F(k) is the k-th Fibonacci number (A000045).
Previous Showing 11-16 of 16 results.