cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A051044 Odd values of the PartitionsQ function A000009.

Original entry on oeis.org

1, 1, 1, 3, 5, 15, 27, 89, 165, 585, 1113, 4097, 7917, 29927, 58499, 225585, 444793, 1741521, 3457027, 13699699, 27342421, 109420549, 219358315, 884987529, 1780751883, 7233519619, 14600965705, 59656252987, 120742510607, 495811828759, 1005862035461
Offset: 0

Views

Author

Keywords

Comments

A000009(n) is odd iff n is of the form k*(3*k - 1)/2 or k*(3*k + 1)/2. - Jonathan Vos Post, Jun 18 2005
Eric W. Weisstein comments: "The values of n for which A000009(n) is prime are 3, 4, 5, 7, 22, 70, 100, 495, 1247, 2072, 320397, ... (A035359). These values correspond to 2, 2, 3, 5, 89, 29927, 444793, 602644050950309, ... (A051005). It is not known if a(n) is infinitely often prime, but Gordon and Ono (1997) proved that it is 'almost always' divisible by any given power of 2 (1997)."
Semiprime values begin: a(5) = 15 = 3 * 5, a(11) = 4097 = 17 * 241, a(20) = 27342421 = 389 * 70289, a(24) = 1780751883 = 3 * 593583961, a(28) = 120742510607 = 31 * 3894919697. - Jonathan Vos Post, Jun 18 2005

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> b((m->m*(3*m-1)/2)(ceil(-n*(-1)^n/2))):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 23 2021
  • Mathematica
    PartitionsQ /@ Table[n*((n + 1)/6), {n, Select[Range[50], Mod[#, 3] != 1 & ]}] (* Jean-François Alcover, Oct 31 2012, after Reinhard Zumkeller *)

Formula

a(n) = A000009(A001318(n)). - Reinhard Zumkeller, Apr 22 2006

Extensions

Missing initial 1 inserted by Sean A. Irvine, Aug 23 2021

A330996 Nearest integer to P(n)/Q(n) = A000041(n)/A000009(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 30, 32, 34, 35, 37, 39, 41, 44, 46, 48, 51, 53, 56, 59, 61, 64, 68, 71, 74, 78, 81, 85, 89, 93, 97, 101, 106, 111, 115, 120, 126
Offset: 0

Views

Author

Gus Wiseman, Jan 08 2020

Keywords

Comments

Conjecture: This sequence is nondecreasing. More generally, the rational sequence A000041(n)/A000009(n) is nondecreasing for n > 5.

Crossrefs

The numerators are A330994.
The denominators are A330995.
The same for factorizations is A331048.

Programs

  • Mathematica
    Table[Round[PartitionsP[n]/PartitionsQ[n]],{n,0,100}]

A285216 Indices of primes in A000219.

Original entry on oeis.org

2, 4, 11, 30, 32, 40, 50, 85, 100, 237, 381, 733, 805, 882, 1015, 1650, 2439, 3163, 3335, 3506, 3675, 4152, 4446, 4576, 5010, 5101, 6045, 6760, 7412, 8178, 8562, 10026, 10527, 10888, 12406, 12693, 13479, 16109, 16978, 17962, 20696, 22483, 25383, 31458, 38956
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Examples

			11 is in the sequence because A000219(11) = 859 is prime.
		

Crossrefs

Programs

A285217 Indices of primes in A000712.

Original entry on oeis.org

1, 2, 70, 106, 330, 366, 370, 546, 836, 1370, 1870, 2126, 2616, 4240, 4836, 4956, 9520, 10896, 11446, 14250, 15836, 16170, 18040, 18566, 26516, 28676, 37060, 40546, 40760, 46850, 52060, 57176, 67726, 74776, 78460, 90810, 98216, 108870, 115400, 115990, 123930
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Examples

			70 is in the sequence because A000712(70) = 7592053897 is prime.
		

Crossrefs

A285222 Indices of primes in A022629.

Original entry on oeis.org

2, 3, 4, 7, 12, 39, 49, 56, 76, 91, 216, 221, 235, 272, 277, 331, 345, 362, 385, 655, 686, 749, 1023, 1591, 1742, 1825, 1836, 1911, 2179, 2511, 2638, 2951, 3004, 3327, 3692, 4743, 4868, 5546, 5658, 5997, 6032, 7867, 8261, 8620, 8811, 13762, 13950, 14150
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Examples

			12 is in the sequence because A022629(12) = 463 is prime.
		

Crossrefs

A285223 Indices of primes in A026007.

Original entry on oeis.org

2, 3, 8, 15, 18, 34, 106, 169, 404, 411, 421, 501, 504, 558, 586, 616, 822, 1051, 1573, 1791, 1894, 1935, 2178, 2536, 2823, 2908, 5002, 5037, 5383, 5826, 6418, 8778, 8968, 9816, 9928, 11512, 12011, 12052, 12524, 13117, 13268, 13640, 15614, 16657, 17938, 19869
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Examples

			8 is in the sequence because A026007(8) = 83 is prime.
		

Crossrefs

A331230 Numbers k such that the number of factorizations of k into distinct factors > 1 is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319237 in lacking 300.

Crossrefs

The version for strict integer partitions is A001318.
The version for integer partitions is A052002.
The version for set partitions appears to be A032766.
The non-strict version is A331050.
The version for primes (instead of odds) is A331201.
The even version is A331231.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],OddQ[Length[strfacs[#]]]&]

A285219 Indices of primes in A003105.

Original entry on oeis.org

5, 6, 7, 8, 9, 11, 13, 22, 28, 29, 31, 38, 47, 53, 56, 59, 63, 64, 76, 85, 88, 91, 110, 111, 124, 135, 165, 202, 210, 214, 234, 243, 256, 262, 280, 322, 335, 346, 438, 443, 458, 463, 508, 580, 590, 696, 790, 865, 903, 951, 993, 996, 1004, 1163, 1338, 1396
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Examples

			28 is in the sequence because A003105(28) = 47 is prime.
		

Crossrefs

A295291 Indices of primes in sequence A000700.

Original entry on oeis.org

8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 24, 29, 32, 35, 38, 39, 51, 56, 61, 77, 82, 88, 90, 91, 92, 107, 118, 119, 123, 139, 148, 161, 162, 166, 185, 189, 190, 194, 208, 214, 333, 346, 355, 373, 401, 402, 493, 543, 567, 578, 603, 629, 653, 665, 666, 678
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 19 2017

Keywords

Examples

			51 is in the sequence because A000700(51) = 107 is prime.
		

Crossrefs

A254269 Largest prime factor of the strict partition numbers Q(n) (partitions into distinct parts, A000009).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 5, 3, 2, 5, 3, 5, 3, 11, 3, 2, 19, 23, 3, 2, 19, 89, 13, 61, 71, 11, 3, 37, 2, 37, 17, 13, 7, 2, 13, 167, 19, 3, 491, 53, 7, 31, 23, 227, 2, 3, 37, 97, 17, 59, 241, 79, 5, 953, 1063, 1777, 29, 367, 17, 17, 3019, 181, 29, 4111
Offset: 0

Views

Author

Jean-François Alcover, Jan 27 2015

Keywords

Comments

A035359 is the sequence of indices n such that a(n) = A000009(n).

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[PartitionsQ[n]][[-1, 1]], {n, 0, 100}]
Previous Showing 11-20 of 22 results. Next