cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 142 results. Next

A351003 Number of integer partitions y of n such that y_i = y_{i+1} for all even i.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 28, 36, 42, 51, 62, 75, 88, 106, 124, 147, 173, 202, 236, 278, 320, 371, 431, 497, 572, 661, 756, 867, 993, 1132, 1291, 1474, 1672, 1898, 2155, 2439, 2756, 3117, 3512, 3957, 4458, 5008, 5624, 6316, 7072, 7919, 8862, 9899
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (311)    (51)      (61)
                    (1111)  (2111)   (222)     (322)
                            (11111)  (411)     (511)
                                     (3111)    (2221)
                                     (21111)   (4111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The ordered version (compositions) is A027383.
The version for unequal instead of equal is A122135, even-length A351008.
For odd instead of even indices we have A351004, even-length A035363.
Requiring inequalities at odd positions gives A351006, even-length A351007.
The even-length case is A351012.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,10}]

A351204 Number of integer partitions of n such that every permutation has all distinct runs.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 11, 14, 18, 20, 25, 28, 34, 41, 47, 53, 64, 72, 84, 98, 113, 128, 148, 169, 194, 223, 255, 289, 333, 377, 428, 488, 554, 629, 715, 807, 913, 1033, 1166, 1313, 1483, 1667, 1875, 2111, 2369, 2655, 2977, 3332, 3729, 4170, 4657, 5195, 5797, 6459
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

Partitions enumerated by this sequence include those in which all parts are either the same or distinct as well as partitions with an even number of parts all of which except one are the same. - Andrew Howroyd, Feb 15 2022

Examples

			The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (2111)   (51)      (61)       (62)
                            (11111)  (222)     (421)      (71)
                                     (321)     (2221)     (431)
                                     (3111)    (4111)     (521)
                                     (111111)  (211111)   (2222)
                                               (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The version for run-lengths instead of runs is A000005.
The version for normal multisets is 2^(n-1) - A283353(n-3).
The complement is counted by A351203, ranked by A351201.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A238130 and A238279 count compositions by number of runs.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!UnsameQ@@Split[#]&]=={}&]],{n,0,15}]
  • PARI
    \\ here Q(n) is A000009.
    Q(n)={polcoef(prod(k=1, n, 1 + x^k + O(x*x^n)), n)}
    a(n)={Q(n) + if(n, numdiv(n) - 1) + sum(k=1, (n-1)\3, sum(j=3, (n-1)\k, j%2==1 && n-k*j<>k))} \\ Andrew Howroyd, Feb 15 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 15 2022

A346704 Product of primes at even positions in the weakly increasing list (with multiplicity) of prime factors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 2, 1, 7, 5, 4, 1, 3, 1, 2, 7, 11, 1, 6, 5, 13, 3, 2, 1, 3, 1, 4, 11, 17, 7, 6, 1, 19, 13, 10, 1, 3, 1, 2, 3, 23, 1, 4, 7, 5, 17, 2, 1, 9, 11, 14, 19, 29, 1, 10, 1, 31, 3, 8, 13, 3, 1, 2, 23, 5, 1, 6, 1, 37, 5, 2, 11, 3, 1, 4, 9
Offset: 1

Views

Author

Gus Wiseman, Aug 08 2021

Keywords

Examples

			The prime factors of 108 are (2,2,3,3,3), with even bisection (2,3), with product 6, so a(108) = 6.
The prime factors of 720 are (2,2,2,2,3,3,5), with even bisection (2,2,3), with product 12, so a(720) = 12.
		

Crossrefs

Positions of first appearances are A129597.
Positions of 1's are A008578.
Positions of primes are A168645.
The sum of prime indices of a(n) is A346698(n).
The odd version is A346703 (sum: A346697).
The odd reverse version is A346701 (sum: A346699).
The reverse version appears to be A329888 (sum: A346700).
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433/A335448 rank separable/inseparable partitions.
A344606 counts alternating permutations of prime indices.
A344617 gives the sign of the alternating sum of prime indices.
A346633 adds up the even bisection of standard compositions.

Programs

  • Maple
    f:= proc(n) local F,i;
      F:= ifactors(n)[2];
      F:= sort(map(t -> t[1]$t[2],F));
      mul(F[i],i=2..nops(F),2)
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 12 2024
  • Mathematica
    Table[Times@@Last/@Partition[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]],2],{n,100}]

Formula

a(n) * A346703(n) = n.
A056239(a(n)) = A346698(n).

A347443 Number of integer partitions of n with reverse-alternating product <= 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 10, 12, 19, 22, 34, 40, 60, 69, 101, 118, 168, 195, 272, 317, 434, 505, 679, 793, 1050, 1224, 1599, 1867, 2409, 2811, 3587, 4186, 5290, 6168, 7724, 9005, 11186, 13026, 16062, 18692, 22894, 26613, 32394, 37619, 45535, 52815, 63593, 73680
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

Includes all partitions of even length (A027187).
Also the number of integer partitions of n with reverse-alternating sum <= 1.
Also the number of integer partitions of n having either even length (A027187) or having exactly one odd part in the conjugate partition (A100824).
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (2111)   (2211)    (331)      (71)
                            (11111)  (3111)    (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (211111)   (5111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The odd-length case is A035363 (shifted).
The strict case is A067661.
The non-reverse version is counted by A119620, ranked by A347466.
The even bisection is A236913.
The opposite version (>= instead of <=) is A344607.
The case of < 1 instead of <= 1 is A344608.
The multiplicative version (factorizations) is A347438, non-reverse A339846.
Allowing any integer reverse-alternating product gives A347445.
The complement (> 1 instead of <= 1) is counted by A347449.
Ranked by A347465, non-reverse A347450.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A058622 counts compositions with alternating sum <= 0 (A294175 for < 0).
A100824 counts partitions with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]<=1&]],{n,0,30}]

Formula

a(n) = A027187(n) + A035363(n-1) for n >= 1. [Corrected by Georg Fischer, Dec 13 2022]
a(n) = A119620(n) + A344608(n).

A351007 Number of even-length integer partitions of n into parts that are alternately unequal and equal.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 10, 13, 14, 16, 18, 20, 23, 27, 28, 32, 37, 40, 44, 51, 54, 60, 67, 73, 81, 90, 96, 107, 118, 127, 139, 154, 166, 181, 198, 213, 232, 256, 273, 297, 325, 348, 377, 411, 440, 476, 516, 555, 598, 647, 692, 746, 807
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Comments

These are partitions whose multiplicities begin with a 1, are followed by any number of 2's, and end with another 1.

Examples

			The a(3) = 1 through a(15) = 13 partitions (A..E = 10..14):
  21  31  32  42  43  53    54    64    65    75    76    86    87
          41  51  52  62    63    73    74    84    85    95    96
                  61  71    72    82    83    93    94    A4    A5
                      3221  81    91    92    A2    A3    B3    B4
                            4221  5221  A1    B1    B2    C2    C3
                                        4331  4332  C1    D1    D2
                                        6221  5331  5332  5441  E1
                                              7221  6331  6332  5442
                                                    8221  7331  6441
                                                          9221  7332
                                                                8331
                                                                A221
                                                                433221
		

Crossrefs

The alternately equal and unequal version is A035457, any length A351005.
This is the even-length case of A351006, odd-length A053251.
Without equalities we have A351008, any length A122129, opposite A122135.
Without inequalities we have A351012, any length A351003, opposite A351004.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

A340784 Heinz numbers of even-length integer partitions of even numbers.

Original entry on oeis.org

1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 39, 40, 46, 49, 55, 57, 62, 64, 81, 82, 84, 85, 87, 88, 90, 91, 94, 100, 111, 115, 118, 121, 129, 133, 134, 136, 144, 146, 155, 156, 159, 160, 166, 169, 183, 184, 187, 189, 194, 196, 198, 203, 205, 206, 210, 213, 218, 220
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are positive integers whose number of prime indices and sum of prime indices are both even, counting multiplicity in both cases.
A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 28 2024

Examples

			The sequence of partitions together with their Heinz numbers begins:
      1: ()            57: (8,2)            118: (17,1)
      4: (1,1)         62: (11,1)           121: (5,5)
      9: (2,2)         64: (1,1,1,1,1,1)    129: (14,2)
     10: (3,1)         81: (2,2,2,2)        133: (8,4)
     16: (1,1,1,1)     82: (13,1)           134: (19,1)
     21: (4,2)         84: (4,2,1,1)        136: (7,1,1,1)
     22: (5,1)         85: (7,3)            144: (2,2,1,1,1,1)
     25: (3,3)         87: (10,2)           146: (21,1)
     34: (7,1)         88: (5,1,1,1)        155: (11,3)
     36: (2,2,1,1)     90: (3,2,2,1)        156: (6,2,1,1)
     39: (6,2)         91: (6,4)            159: (16,2)
     40: (3,1,1,1)     94: (15,1)           160: (3,1,1,1,1,1)
     46: (9,1)        100: (3,3,1,1)        166: (23,1)
     49: (4,4)        111: (12,2)           169: (6,6)
     55: (5,3)        115: (9,3)            183: (18,2)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of prime powers is A056798.
These partitions are counted by A236913.
The odd version is A160786 (A340931).
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058695 counts partitions of odd numbers (A300063).
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.
Squares (A000290) is a subsequence.
Not a subsequence of A329609 (30 is the first term of A329609 not occurring here, and 210 is the first term here not present in A329609).
Positions of even terms in A373381.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[PrimeOmega[#]]&&EvenQ[Total[primeMS[#]]]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    A353331(n) = ((!(bigomega(n)%2)) && (!(A056239(n)%2)));
    isA340784(n) = A353331(n); \\ Antti Karttunen, Apr 14 2022

Formula

Intersection of A028260 and A300061.

A365067 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n whose odd parts sum to k, for k ranging from mod(n,2) to n in steps of 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 4, 3, 4, 3, 5, 5, 3, 4, 4, 6, 5, 6, 6, 5, 8, 7, 5, 6, 8, 6, 10, 7, 10, 9, 10, 8, 12, 11, 7, 10, 12, 12, 10, 15, 11, 14, 15, 15, 16, 12, 18, 15, 11, 14, 20, 18, 20, 15, 22, 15, 22, 21, 25, 24, 24, 18, 27
Offset: 0

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The version for all k = 0..n is A113685 (including zeros).

Examples

			Triangle begins:
   1
   1
   1  1
   1  2
   2  1  2
   2  2  3
   3  2  2  4
   3  4  3  5
   5  3  4  4  6
   5  6  6  5  8
   7  5  6  8  6 10
   7 10  9 10  8 12
  11  7 10 12 12 10 15
  11 14 15 15 16 12 18
  15 11 14 20 18 20 15 22
  15 22 21 25 24 24 18 27
Row n = 8 counts the following partitions:
  (8)     (611)    (431)     (521)      (71)
  (62)    (4211)   (41111)   (332)      (53)
  (44)    (22211)  (3221)    (32111)    (5111)
  (422)            (221111)  (2111111)  (3311)
  (2222)                                (311111)
                                        (11111111)
Row n = 9 counts the following partitions:
  (81)     (63)      (54)       (72)        (9)
  (621)    (6111)    (522)      (5211)      (711)
  (441)    (432)     (4311)     (3321)      (531)
  (4221)   (42111)   (411111)   (321111)    (51111)
  (22221)  (3222)    (32211)    (21111111)  (333)
           (222111)  (2211111)              (33111)
                                            (3111111)
                                            (111111111)
		

Crossrefs

Row sums are A000041.
The version including all k is A113685, even version A113686.
Column k = 1 is A119620.
The even version and the reverse version are both A174713.
For odd-indexed instead of odd parts we have A346697, even version A346698.
The corresponding rank statistic is A366528, even version A366531.
A000009 counts partitions into odd parts, ranks A066208.
A086543 counts partitions with odd parts, ranks A366322.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Total[Select[#,OddQ]]==k&]],{n,0,15},{k,Mod[n,2],n,2}]

Formula

T(n,k) = A000009(k) * A000041((n-k)/2).

A174713 Triangle read by rows, A173305 (A000009 shifted down twice) * A174712 (diagonalized variant of A000041).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 2, 4, 2, 2, 3, 5, 3, 4, 3, 6, 4, 4, 3, 5, 8, 5, 6, 6, 5, 10, 6, 8, 6, 5, 7, 12, 8, 10, 9, 10, 7, 15, 10, 12, 12, 10, 7, 11, 18, 12, 16, 15, 15, 14, 11, 22, 15, 20, 18, 20, 14, 11, 15
Offset: 0

Views

Author

Gary W. Adamson, Mar 27 2010

Keywords

Comments

Row sums = A000041, the partition numbers.
The current triangle is the 2nd in an infinite set, followed by A174714 (k=3), and A174715, (k=4); in which row sums of each triangle = A000041.
k-th triangle in the infinite set can be defined as having the sequence:
"Euler transform of ones: (1,1,1,...) interleaved with (k-1) zeros"; shifted down k times (except column 0) in successive columns, then multiplied * triangle A174712, the diagonalized variant of A000041, A174713 begins with A000009 shifted down twice (triangle A173305); where A000009 = the Euler transform of period 2 sequence: [1,0,1,0,...].
Similarly, triangle A174714 begins with A000716 shifted down thrice; where A000716 = the Euler transform of period 3 series: [1,1,0,1,1,0,...]. Then multiply the latter as an infinite lower triangular matrix * A174712, the diagonalized variant of A000041, obtaining triangle A174714 with row sums = A000041.
Case k=4 = triangle A174715 which begins with the Euler transform of period 4 series: [1,1,1,0,1,1,1,0,...], shifted down 4 times in successive columns then multiplied * A174712, the diagonalized variant of A000041.
All triangles in the infinite set have row sums = A000041.
The sequences: "Euler transform of ones interleaved with (k-1) zeros" have the following properties, beginning with k=2:
...
k=2, A000009: = Euler transform of [1,0,1,0,1,0,...] and satisfies
.....A000009. = p(x)/p(x^2), where p(x) = polcoeff A000041; and A000041 =
.....A000009(x) = r(x), then p(x) = r(x) * r(x^2) * r(x^4) * r(x^8) * ...
...
k=3, A000726: = Euler transform of [1,1,0,1,1,0,...] and satisfies
.....A000726(x): = p(x)/p(x^3), and given s(x) = polcoeff A000726, we get
.....A000041(x) = p(x) = s(x) * s(x^3) * s(x^9) * s(x^27) * ...
...
k=4, A001935: = Euler transform of [1,1,1,0,1,1,1,0,...] and satisfies
.....A001935(x) = p(x)/p(x^4) and given t(x) = polcoeff A001935, we get
.....A000041(x) = p(x) = t(x) * t(x^4) * t(x^16) * t(x^64) * ...
...
Also the number of integer partitions of n whose even parts sum to k, for k an even number from zero to n. The version including odd k is A113686. - Gus Wiseman, Oct 23 2023

Examples

			First few rows of the triangle =
1;
1;
1, 1;
2, 1;
2, 1, 2;
3, 2, 2;
4, 2, 2, 3;
5, 3, 4, 3;
6, 4, 4, 3, 5;
8, 5, 6, 6, 5;
10, 6, 8, 6, 5, 7;
12, 8, 10, 9, 10, 7;
15, 10, 12, 12, 10, 7, 11;
18, 12, 16, 15, 15, 14, 11;
22, 15, 20, 18, 20, 14, 11, 15;
...
From _Gus Wiseman_, Oct 23 2023: (Start)
Row n = 9 counts the following partitions:
  (9)          (72)        (54)       (63)      (81)
  (711)        (5211)      (522)      (6111)    (621)
  (531)        (3321)      (4311)     (432)     (441)
  (51111)      (321111)    (411111)   (42111)   (4221)
  (333)        (21111111)  (32211)    (3222)    (22221)
  (33111)                  (2211111)  (222111)
  (3111111)
  (111111111)
(End)
		

Crossrefs

Row sums are A000041.
The odd version is A365067.
The corresponding rank statistic is A366531, odd version A366528.
A000009 counts partitions into odd parts, ranks A066208.
A113685 counts partitions by sum of odd parts, even version A113686.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[Select[#,EvenQ]]==k&]],{n,0,15},{k,0,n,2}] (* Gus Wiseman, Oct 23 2023 *)

Formula

As infinite lower triangular matrices, A173305 * A174712.
T(n,k) = A000009(n-2k) * A000041(k). - Gus Wiseman, Oct 23 2023

A340785 Number of factorizations of 2n into even factors > 1.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 4, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 11, 1, 2, 1, 6, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 12, 1, 3, 1, 4, 1, 3, 1, 7, 1, 2, 1, 7, 1, 2, 1, 15, 1, 3, 1, 4, 1, 3, 1, 12, 1, 2, 1, 4, 1, 3, 1, 12, 1, 2, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Examples

			The a(n) factorizations for n = 2*2, 2*4, 2*8, 2*12, 2*16, 2*32, 2*36, 2*48 are:
  4    8      16       24     32         64           72      96
  2*2  2*4    2*8      4*6    4*8        8*8          2*36    2*48
       2*2*2  4*4      2*12   2*16       2*32         4*18    4*24
              2*2*4    2*2*6  2*2*8      4*16         6*12    6*16
              2*2*2*2         2*4*4      2*4*8        2*6*6   8*12
                              2*2*2*4    4*4*4        2*2*18  2*6*8
                              2*2*2*2*2  2*2*16               4*4*6
                                         2*2*2*8              2*2*24
                                         2*2*4*4              2*4*12
                                         2*2*2*2*4            2*2*4*6
                                         2*2*2*2*2*2          2*2*2*12
                                                              2*2*2*2*6
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The version for partitions is A035363 (A066207).
The odd version is A340101.
The even length case is A340786.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A316439 counts factorizations by product and length
A340102 counts odd-length factorizations of odd numbers into odd factors.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum.
A340601 counts partitions of even rank (A340602).
Even bisection of A349906.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[#,OddQ]=={}&]],{n,2,100,2}]
  • PARI
    A349906(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A349906(n/d, d))); (s));
    A340785(n) = A349906(2*n); \\ Antti Karttunen, Dec 13 2021

Formula

a(n) = A349906(2*n). - Antti Karttunen, Dec 13 2021

A366531 Sum of even prime indices of n.

Original entry on oeis.org

0, 0, 2, 0, 0, 2, 4, 0, 4, 0, 0, 2, 6, 4, 2, 0, 0, 4, 8, 0, 6, 0, 0, 2, 0, 6, 6, 4, 10, 2, 0, 0, 2, 0, 4, 4, 12, 8, 8, 0, 0, 6, 14, 0, 4, 0, 0, 2, 8, 0, 2, 6, 16, 6, 0, 4, 10, 10, 0, 2, 18, 0, 8, 0, 6, 2, 0, 0, 2, 4, 20, 4, 0, 12, 2, 8, 4, 8, 22, 0, 8, 0, 0, 6
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = 2+2 = 4.
		

Crossrefs

Zeros are A066208, counted by A000009.
The triangle for the odd version is A113685, without zeros A365067.
The triangle for this statistic is A113686, without zeros A174713.
The odd version is A366528.
The halved version is A366533.
A066207 lists numbers with all even prime indices, counted by A035363.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A239261 counts partitions with sum of odd parts = sum of even parts.
A257991 counts odd prime indices, even A257992.
A346697 adds up odd-indexed prime indices, even-indexed A346698.
A366322 lists numbers with not all prime indices even, counted by A086543.

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n], {p_?(EvenQ@*PrimePi),k_}:>PrimePi[p]*k]],{n,100}]

Formula

a(n) = A056239(n) - A366528(n).
Previous Showing 51-60 of 142 results. Next