cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A109708 Number of partitions of n into parts each equal to 6 mod 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 2, 1, 0, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 4, 3, 2, 1, 2, 3, 5, 5, 5, 2, 2, 3, 5, 6, 8, 5, 3, 3, 5, 7, 10, 9, 7, 4, 5, 7, 11, 12, 12, 8, 6, 7, 12, 14, 17, 15, 11, 8, 12, 15, 20, 21, 19, 13, 13, 16, 22, 26, 28, 23
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(45)=3 because we have 45=27+6+6+6=20+13+6+6=13+13+13+6.
		

Crossrefs

Cf. A284105.
Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), A035462 (m=4), A109700 (m=5), A109702 (m=6), this sequence (m=7).

Programs

  • Maple
    g:=1/product(1-x^(6+7*j),j=0..20): gser:=series(g,x=0,98): seq(coeff(gser,x,n),n=0..95); # Emeric Deutsch, Apr 14 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(7*k+6)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/product(1-x^(6+7j), j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(6/7) * exp(Pi*sqrt(2*n/21)) / (2^(27/14) * 3^(3/7) * 7^(1/14) * Pi^(1/7) * n^(13/14)) * (1 - (39*sqrt(3/14)/(7*Pi) + 13*Pi/(168*sqrt(42))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284105(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015

A337548 Number of compositions (ordered partitions) of n into distinct parts congruent to 2 mod 3.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 4, 1, 6, 4, 1, 6, 6, 1, 12, 6, 1, 18, 8, 25, 24, 8, 25, 30, 10, 49, 42, 10, 73, 48, 12, 121, 60, 132, 145, 72, 134, 217, 84, 254, 265, 96, 376, 361, 114, 616, 433, 126, 858, 553, 864, 1218, 649, 882, 1580, 817, 1620, 2180, 937
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 22 2020

Keywords

Examples

			a(15) = 6 because we have [8, 5, 2], [8, 2, 5], [5, 8, 2], [5, 2, 8], [2, 8, 5] and [2, 5, 8].
		

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[k! x^(k (3 k + 1)/2)/Product[1 - x^(3 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} k! * x^(k*(3*k + 1)/2) / Product_{j=1..k} (1 - x^(3*j)).

A374064 Expansion of Product_{k>=1} 1 / (1 + x^(3*k-1)).

Original entry on oeis.org

1, 0, -1, 0, 1, -1, -1, 1, 0, -1, 1, 0, -1, 1, 0, -2, 2, 1, -3, 1, 3, -3, 0, 3, -3, -1, 4, -3, -1, 5, -3, -3, 7, -3, -5, 7, -1, -7, 8, 0, -8, 8, 1, -11, 10, 3, -14, 9, 8, -17, 8, 10, -18, 6, 14, -22, 6, 19, -24, 1, 26, -26, -3, 30, -25, -9, 37, -27, -13, 42, -26, -23, 51, -25, -31, 56
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1/(1 + x^(3 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[DivisorSum[k, (-1)^(k/#) # &, Mod[#, 3] == 2 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 75}]

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} A262928(k) * a(n-k).
a(n) = Sum_{k=0..n} A081362(k) * A132463(n-k).
a(n) = Sum_{k=0..n} A109389(k) * A261612(n-k).

A374058 Expansion of Product_{k>=1} (1 - x^(3*k-2)) * (1 - x^(3*k)).

Original entry on oeis.org

1, -1, 0, -1, 0, 1, -1, 1, 0, 0, 1, 0, -1, 1, -1, 1, 0, -1, 0, 0, -1, 1, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, 1, 1, -1, 0, 0, -1, 2, 0, -1, 1, 0, -1, 2, -2, 0, 1, -1, 0, 1, -1, 0, 1, -2, 1, 1, -2, 1, 0, -2, 2, 0, -2, 2, -1, 0, 2, -1, -1, 1, -1, -1, 3, -2, 0, 2, -2, 1, 2, -3, 1, 1, -2, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Product[(1 - x^(3 k - 2)) (1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Plus @@ Select[Divisors[k], Mod[#, 3] != 2 &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 85}]

Formula

a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A082051(k) * a(n-k).
a(0) = 1; a(n) = -Sum_{k=1..n} A035360(k) * a(n-k).
a(n) = Sum_{k=0..n} A010815(k) * A035386(n-k).

A362697 Expansion of e.g.f. Product_{k>0} (1 - x^(3*k-1))^(-1/(3*k-1)).

Original entry on oeis.org

1, 0, 1, 0, 9, 24, 225, 504, 16065, 27216, 1555281, 6123600, 159249321, 779262120, 31816914129, 240363179784, 8207359913025, 66059979227424, 2145292484152545, 19782668403572256, 1015331126023222281, 7961977144683689400, 454920488042137314561
Offset: 0

Views

Author

Seiichi Manyama, Jul 07 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-x^(3*k-1))^(1/(3*k-1)))))

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A001822(k) * a(n-k)/(n-k)!.

A304883 Expansion of Product_{k>=1} 1/(1-x^(3*k-1)) * Product_{k>=1} 1/(1-x^(6*k-5)).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 17, 21, 26, 32, 39, 47, 56, 67, 80, 95, 113, 133, 156, 183, 214, 250, 291, 338, 391, 452, 521, 600, 690, 791, 906, 1035, 1181, 1346, 1532, 1741, 1975, 2238, 2532, 2862, 3231, 3643, 4103, 4615, 5186, 5822, 6529, 7315, 8187, 9154
Offset: 0

Views

Author

Seiichi Manyama, May 20 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul(1/(1-x^(3*k-1)),k=1..n)*mul(1/(1-x^(6*k-5)),k=1..n), x,70),x,n),n=0..60); # Muniru A Asiru, May 21 2018
  • Mathematica
    CoefficientList[ Series[ Product[1/(1 - x^(3k -1)), {k, 18}]*Product[1/(1 - x^(6k -5)), {k, 9}], {x, 0, 54}], x] (* Robert G. Wilson v, May 20 2018 *)

Formula

G.f.: Sum_{j>=0} x^(j*(3*j+1)/2)*(Product_{k=1..j} (1-x^(6*k-2)))/(Product_{k=1..3*j+1} (1-x^k)).
a(n) ~ exp(Pi*sqrt(n/3)) * Gamma(1/3) / (4 * 3^(1/3) * Pi^(2/3) * n^(2/3)). - Vaclav Kotesovec, May 21 2018

A374018 Expansion of Product_{k>=1} 1 / (1 - x^(3*k-1))^2.

Original entry on oeis.org

1, 0, 2, 0, 3, 2, 4, 4, 7, 6, 13, 10, 19, 18, 27, 30, 42, 44, 63, 66, 91, 100, 130, 144, 187, 206, 263, 294, 364, 412, 506, 568, 696, 782, 943, 1070, 1273, 1444, 1713, 1936, 2285, 2586, 3027, 3428, 3996, 4516, 5243, 5924, 6841, 7730, 8895, 10030, 11512, 12966, 14825, 16696
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Product[1/(1 - x^(3 k - 1))^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(0) = 1; a(n) = (2/n) * Sum_{k=1..n} A078182(k) * a(n-k).
a(n) = Sum_{k=0..n} A035386(k) * A035386(n-k).
a(n) ~ exp(2*Pi*sqrt(n)/3) * Pi^(4/3) / (3^(3/2) * Gamma(1/3)^2 * n^(11/12)). - Vaclav Kotesovec, Jun 25 2024
Previous Showing 11-17 of 17 results.