cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A054952 Number of unlabeled semi-strong digraphs on n nodes with pairwise different components.

Original entry on oeis.org

1, 1, 6, 88, 5136, 1052154, 706474926, 1581054875274, 12140605885784816, 328173091958855376334, 31831409045512513121561226, 11234306828778006073392046869300, 14576263867446651299709243211339018934, 70075728362101598938266196294267261948879446
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Comments

Weigh transform of A035512. - Andrew Howroyd, Sep 10 2018
A digraph is semi-strong if all its weakly connected components are strongly connected. - Andrew Howroyd, Jan 14 2022

Crossrefs

Programs

Formula

G.f.: -1 + Product_{n > 0} (1 + x^n)^A035512(n). - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 11 2003
a(12)-a(14) from Andrew Howroyd, Sep 10 2018

A054953 Number of unlabeled semi-strong digraphs on n nodes with an odd number of pairwise different components.

Original entry on oeis.org

1, 1, 5, 83, 5048, 1047013, 705422455, 1580348377261, 12139024826336632, 328160951350054991463, 31831080872414173375174213, 11234274997368911879051177335450, 14576252633139821208116086572516525403, 70075713785837731364265242597960381223077163
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A054952(n) + A054951(n))/2. - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 11 2003
a(12)-a(14) from Andrew Howroyd, Sep 10 2018

A054954 Number of unlabeled semi-strong digraphs on n nodes with an even number of pairwise different components.

Original entry on oeis.org

0, 0, 1, 5, 88, 5141, 1052471, 706498013, 1581059448184, 12140608800384871, 328173098339746387013, 31831409094194340869533850, 11234306830091593156638822493531, 14576263867574000953696306880725802283
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A054952(n) - A054951(n))/2. - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 11 2003
a(12)-a(14) from Andrew Howroyd, Sep 10 2018

A106238 Triangle read by rows: T(n,m) is the number of semi-strong digraphs on n unlabeled nodes with m connected components.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 83, 6, 1, 1, 5048, 88, 6, 1, 1, 1047008, 5146, 89, 6, 1, 1, 705422362, 1052471, 5151, 89, 6, 1, 1, 1580348371788, 706498096, 1052569, 5152, 89, 6, 1, 1, 12139024825260556, 1581059448174, 706503594, 1052574, 5152, 89, 6, 1, 1
Offset: 1

Views

Author

Washington Bomfim, May 01 2005

Keywords

Comments

The formula T(n,m) is the sum over the partitions of n with m parts 1K1 + 2K2 + ... + nKn, of Product_{i=1..n} binomial(f(i) + Ki - 1, Ki) can be used to count unlabeled graphs of order n with m components if f(i) is the number of non-isomorphic connected components of order i. (In general, f denotes a sequence that counts unlabeled connected combinatorial objects.)
A digraph is semi-strong if all its weakly connected components are strongly connected. - Andrew Howroyd, Jan 14 2022

Examples

			Triangle begins:
          1;
          1,       1;
          5,       1,    1;
         83,       6,    1,  1;
       5048,      88,    6,  1, 1;
    1047008,    5146,   89,  6, 1, 1;
  705422362, 1052471, 5151, 89, 6, 1, 1;
  ...
T(4,2) = 6 because there are 6 digraphs of order 4 with 2 strongly connected components.
		

Crossrefs

Row sums are A350754.
Column 1 is A035512.

Formula

G.f.: 1/Product_{i>=1} (1-y*x^i)^A035512(i). - Vladeta Jovovic, May 04 2005
Triangle read by rows: T(n, m) is the sum over the partitions of n with m parts 1K1 + 2K2 + ... + nKn, of Product_{i=1..n} binomial(A035512(i) + Ki - 1, Ki).

Extensions

Definition clarified by Andrew Howroyd, Jan 14 2022

A350753 Triangle read by rows: T(n,k) is the number of unlabeled strongly connected digraphs with n arcs and k vertices, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 4, 1, 0, 0, 0, 1, 16, 7, 1, 0, 0, 0, 0, 22, 58, 10, 1, 0, 0, 0, 0, 22, 240, 165, 14, 1, 0, 0, 0, 0, 11, 565, 1281, 365, 18, 1, 0, 0, 0, 0, 5, 928, 6063, 4838, 733, 23, 1, 0, 0, 0, 0, 1, 1065, 19591, 38516, 14661, 1317, 28, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Jan 14 2022

Keywords

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1, 0;
  0, 0, 1,  0;
  0, 0, 2,  1,   0;
  0, 0, 1,  4,   1,    0;
  0, 0, 1, 16,   7,    1,   0;
  0, 0, 0, 22,  58,   10,   1,  0;
  0, 0, 0, 22, 240,  165,  14,  1, 0;
  0, 0, 0, 11, 565, 1281, 365, 18, 1, 0;
		

Crossrefs

Row sums are A350752.
Column sums are A035512.
Cf. A057276 (transpose), A350450, A350489.

Programs

  • PARI
    \\ See PARI link in A350489 for program code.
    my(A=A350753rows(10)); for(n=1, #A, print(A[n]))

A361582 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k strongly connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 5, 5, 6, 0, 83, 62, 42, 31, 0, 5048, 2494, 1172, 592, 302, 0, 1047008, 330063, 103961, 38312, 15616, 5984, 0, 705422362, 137934757, 28095923, 7243110, 2297690, 795930, 243668, 0, 1580348371788, 184557780045, 23226116293, 3951426731, 914429926, 261269562, 79512478, 20286025
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,       1;
  0,       1,      2;
  0,       5,      5,      6;
  0,      83,     62,     42,    31;
  0,    5048,   2494,   1172,   592,   302;
  0, 1047008, 330063, 103961, 38312, 15616, 5984;
  ...
		

Crossrefs

Column k=1 is A035512.
Main diagonal is A003087.
Row sums are A000273.
The labeled version is A361455.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A361582triang(6)); for(n=1, #A, print(A[n])) }

A361588 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k strongly connected components and without isolated nodes.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 5, 4, 4, 0, 83, 57, 37, 25, 0, 5048, 2411, 1110, 550, 271, 0, 1047008, 325015, 101467, 37140, 15024, 5682, 0, 705422362, 136887749, 27765860, 7139149, 2259378, 780314, 237684, 0, 1580348371788, 183852357683, 23088181536, 3923330808, 907186816, 258971872, 78716548, 20042357
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,       0;
  0,       1,      1;
  0,       5,      4,      4;
  0,      83,     57,     37,    25;
  0,    5048,   2411,   1110,   550,   271;
  0, 1047008, 325015, 101467, 37140, 15024, 5682;
  ...
		

Crossrefs

Column k=1 is A035512.
Main diagonal is A361589.
Row sums are A053598.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A361588triang(6)); for(n=1, #A, print(A[n])) }

Formula

T(n,k) = A361582(n,k) - A361582(n-1,k-1).

A049387 Number of rooted unlabeled strongly connected digraphs with n nodes.

Original entry on oeis.org

1, 1, 10, 287, 24427, 6222400, 4924590115, 12632686344657, 109225745061589342, 3281390460782419035867, 350135321051253376431022071, 134810599506208376766503740475912, 189491014587142646710566991248361106383, 981059614010249061197621212287544752507380541
Offset: 1

Views

Author

Keywords

Comments

There is a rather difficult formula (simplified in 1973). The subsequent published value 6222928 for n=6 needs to be verified.
The correct value is 6222400. Terms up to a(7) have been confirmed by brute force using digraphs generated by nauty. - Andrew Howroyd, Jan 12 2022

Crossrefs

Programs

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 12 2022

A350754 Number of semi-strong digraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 7, 91, 5144, 1052251, 706480081, 1581055927702, 12140606592270147, 328173093539912361767, 31831409057653120420337536, 11234306829106179168513020426663, 14576263867478482708779036941179024765, 70075728362112833245095630646535639894359350
Offset: 0

Views

Author

Andrew Howroyd, Jan 14 2022

Keywords

Comments

A digraph is semi-strong if all its weakly connected components are strongly connected.

Crossrefs

The labeled version is A054948.
Row sums of A106238.
Cf. A035512.

Formula

Euler transform of A035512.

A361587 Triangle read by rows: T(n,k) is the number of weakly connected digraphs on n unlabeled nodes with k strongly connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 5, 4, 4, 0, 83, 56, 36, 24, 0, 5048, 2406, 1101, 542, 267, 0, 1047008, 324917, 101307, 37017, 14947, 5647, 0, 705422362, 136882286, 27757789, 7134897, 2257234, 779257, 237317, 0, 1580348371788, 183851281949, 23086772643, 3922864504, 907027520, 258909828, 78691767, 20035307
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,       1;
  0,       1,      1;
  0,       5,      4,      4;
  0,      83,     56,     36,    24;
  0,    5048,   2406,   1101,   542,   267;
  0, 1047008, 324917, 101307, 37017, 14947, 5647;
  ...
		

Crossrefs

Column k=1 is A035512.
Main diagonal is A101228.
Row sums are A003085.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A361587triang(6)); for(n=1, #A, print(A[n])) }
Previous Showing 11-20 of 21 results. Next