cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A122221 Largest number k such that k! < (n!)^n.

Original entry on oeis.org

2, 5, 8, 13, 19, 25, 32, 41, 50, 60, 72, 84, 97, 111, 126, 142, 159, 177, 196, 216, 237, 259, 282, 306, 330, 356, 383, 410, 439, 469, 499, 531, 563, 597, 631, 667, 703, 740, 779, 818, 858, 899, 942, 985, 1029, 1074, 1120, 1167, 1215, 1264, 1314, 1365, 1417
Offset: 2

Views

Author

Hugo Pfoertner, Sep 25 2006

Keywords

Examples

			a(3)=5 because 5! = 120 is less than (3!)^3 = 216 whereas 6! = 720 > 216.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local b: b:=proc(k) if k!<(n!)^n then k else fi end: max(seq(b(k),k=1..2200)) end: seq(a(n),n=2..67); # Emeric Deutsch, Oct 07 2006
  • Mathematica
    s={};Do[k=1;Until[k!>=(n!)^n,k++]; AppendTo[s,k-1],{n,2,54}];s (* James C. McMahon, Oct 26 2024 *)

Formula

From Stirling's approximation, a(n) ~ n^2/2. A closer approximation for a(n) is n^2/2-c*n^2/log(n), where c = (1+log(0.5))/4 = A382854/2. - Johann Peters, Aug 23 2025

Extensions

More terms from Emeric Deutsch, Oct 07 2006

A187751 a(n) = n^(n!) mod (n!)^n.

Original entry on oeis.org

0, 0, 0, 81, 225280, 7991790625, 1078848154238976, 65180706714634067542224001, 1650157594512930366268925848349310976, 66807065275536807794426016376688705273224158387201, 228020326859403543540241849077865865705999564800000000000000000000
Offset: 0

Views

Author

Alex Ratushnyak, Jan 03 2013

Keywords

Examples

			a(3) = 3^6 mod 6^3 = 729 mod 216 = 81.
		

Crossrefs

Programs

  • Maxima
    A187751(n):=mod(n^(n!),(n!)^n)$ makelist(A187751(n),n,0,9); /* Martin Ettl, Jan 13 2013 */
  • Python
    import math
    for n in range(12):
      f = math.factorial(n)
      print(pow(n, f, f**n))
    

Formula

a(n) = A053986(n) mod A036740(n).

Extensions

a(10) from David Radcliffe, Jul 05 2025

A225764 Permanent of the n X n matrix M_n = [m_n(i,j)] with m_n(i,j) = Stirling2(n+i,j) for 1<=i,j<=n.

Original entry on oeis.org

1, 1, 10, 3206, 70437736, 183833539918302, 87416643970622777251260, 10762624962747767163398087106191432, 462465255409000135911575652811547463563975232544, 8991898462406411877745541835505866750273920745448784932109344640
Offset: 0

Views

Author

Alois P. Heinz, Jul 25 2013

Keywords

Examples

			a(3) = Permanent([1, 7, 6; 1, 15, 25; 1, 31, 90]) = 3206.
		

Crossrefs

Cf. A036740 (determinant of M_n).

Programs

  • Maple
    with(LinearAlgebra):
    a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> Stirling2(n+i, j)))):
    seq(a(n), n=0..10);
  • Mathematica
    a[n_] := Permanent[Table[StirlingS2[n+i, j], {i, n}, {j, n}]]; a[0] = 1; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jan 07 2016 *)

A254866 a(n) = (n!!)^n.

Original entry on oeis.org

1, 1, 4, 27, 4096, 759375, 12230590464, 140710042265625, 472769874482845188096, 601016336033894136931640625, 697127546117424200558837760000000000, 153133225508583375568553948649382367138671875, 91653624689233987245068783089656480594395136000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 19 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!!)^n, {n, 0, 15}]

Formula

a(n) ~ Pi^(n/2) * n^(n*(n+1)/2) / exp(n^2/2 - 1/6) if n is even.
a(n) ~ 2^(n/2) * n^(n*(n+1)/2) / exp(n^2/2 - 1/6) if n is odd.

A261114 Decimal expansion of Sum_{n>=0} 1/((n!)^n).

Original entry on oeis.org

2, 2, 5, 4, 6, 3, 2, 6, 4, 3, 7, 5, 1, 6, 0, 7, 5, 1, 7, 4, 6, 6, 0, 9, 1, 7, 6, 1, 9, 4, 2, 3, 6, 2, 4, 8, 7, 3, 6, 0, 2, 8, 6, 2, 4, 2, 7, 9, 1, 0, 8, 1, 6, 9, 7, 0, 1, 4, 3, 0, 0, 8, 6, 5, 2, 0, 9, 2, 7, 1, 9, 4, 4, 7, 4, 0, 9, 3, 0, 9, 8, 8, 9, 0, 5, 9, 5
Offset: 1

Views

Author

Daniel Suteu, Sep 20 2015

Keywords

Examples

			2.2546326437516075174660917619423624873602862427910816970143008652092...
		

Crossrefs

Sum of 1/A036740(n).

Programs

  • Mathematica
    RealDigits[N[Sum[1/((n!)^n), {n, 0, Infinity}], 120]] // First (* Michael De Vlieger, Sep 22 2015 *)
  • PARI
    suminf(k=0, 1/k!^k) \\ Michel Marcus, Sep 20 2022

A261602 Triangular array of A(n,k) for n>=1 and 0<=k<=n^2 equal the number of permutations of the set {1,2,...,n}^2 such that first coordinates of first k elements are nondecreasing and second coordinates of the remaining n^2-k elements are nondecreasing.

Original entry on oeis.org

1, 1, 4, 8, 10, 8, 4, 216, 648, 1188, 1668, 1944, 1944, 1668, 1188, 648, 216, 331776, 1327104, 3151872, 5695488, 8608896, 11446272, 13791744, 15326208, 15858432, 15326208, 13791744, 11446272, 8608896, 5695488, 3151872, 1327104, 331776, 24883200000, 124416000000, 360806400000, 787138560000, 1426595328000, 2262299258880, 3240594432000, 4283587584000, 5304730521600, 6222411878400, 6968709089280, 7493189990400, 7763310604800
Offset: 1

Views

Author

Max Alekseyev, Aug 25 2015

Keywords

Comments

A(n,k) = A(n,n^2-k)
It is conjectured that A(n,k)>A(n,k-1) for k<=floor(n^2/2) (see Mathoverflow link).

Examples

			The array starts with
n=1: 1, 1
n=2: 4, 8, 10, 8, 4
n=3: 216, 648, 1188, 1668, 1944, 1944, 1668, 1188, 648, 216
...
		

Crossrefs

Cf. A036740 (A(n,0)), A261603 (A(n,[n^2/2])).

Programs

  • PARI
    { A(n,k) = my(r,rw,rs,s,t,p); r=vector(n^2+1); rw=[]; forvec(v=vector(n,i,[0,1]),rw=concat(rw,[v])); rs=vector(#rw,i,sum(j=1,n,rw[i][j])); forvec(v=vector(n,i,[1,#rw]), s=sum(j=1,#v,rs[v[j]]); t=n!; p=1; for(i=2,#v,if(v[i]==v[i-1],p++,t/=p!;p=1)); t/=p!; r[s+1]+=t*prod(i=1,n,rs[v[i]]!)*prod(j=1,n,(n-sum(i=1,n,rw[v[i]][j]))!); ,1); r[k] }

Formula

A(n,k) = SUM rs(M,1)!*...*rs(M,n)*(n-cs(M,1))!*...*(n-cs(M,n))!, where the sum is taken over n X n (0,1)-matrices with exactly k ones, rs(M,i) and cs(M,j) are the i-th row sum and the j-th column sum of M, respectively.

A351804 a(n) = [x^n] 1/Product_{j=1..n} (1 - j^n*x).

Original entry on oeis.org

1, 1, 21, 28800, 6702928485, 485036145970949475, 17284020213927891173772415260, 439885788765576174397949231373608504971360, 10926401685584312222862714944076761452123218197332439365413, 346792877099311752547903589477147000220953930332269111366383185472249165168535
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2022

Keywords

Examples

			a(2) = (1*1)^2 + (1*2)^2 + (2*2)^2 = 1 + 4 + 16 = 21.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, p) option remember; `if`(k=0, 1,
          add(b(j, k-1, p)*j^p, j=1..n))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..9);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^n*x), {k, 1, n}], {x, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, May 13 2025 *)

Formula

a(n) = Sum_{p in {1..n}^n : p_i <= p_{i+1}} Product_{j=1..n} p_j^n.
a(n) ~ c * n^(n^2), where c = 1/QPochhammer(exp(-1)) = 1.98244090741... - Vaclav Kotesovec, May 13 2025

A366305 a(n) = Product_{k=1..n} (k^n + (k-1)^n).

Original entry on oeis.org

1, 5, 315, 555713, 47705305725, 305469864195354625, 207095306530955763265880535, 20017329298655447986400838721630926977, 357361761140807273279996172600335233468472149678425, 1481824279740988988264353294673429995981921700740921435758587890625
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^n + (k-1)^n, {k, 1, n}], {n, 1, 10}]

Formula

a(n) = (n!)^n * Product_{k=1..n} (1 + (1 - 1/k)^n).
a(n) ~ n!^n * d^n, where d = exp(Integral_{x=0..1} log(1 + exp(-1/x)) dx) = 1.14183186235785012136459060138978468902610644657603999829892450823456733...
a(n) ~ (2*Pi)^(n/2) * d^n * n^(n*(2*n+1)/2) / exp(n^2 - 1/12).

A373341 Array read by ascending antidiagonals: A(n,k) is the number of acyclic de Bruijn sequences of order k and alphabet of size n, with k > 0.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 24, 216, 16, 1, 120, 331776, 10077696, 256, 1, 720, 24883200000, 12116574790945106558976, 1023490369077469249536, 65536, 1
Offset: 1

Views

Author

Stefano Spezia, Jun 01 2024

Keywords

Comments

The 7th antidiagonal is too large to be inserted in Data.

Examples

			The array begins:
   1,      1,                       1, ...
   2,      4,                      16, ...
   6,    216,                10077696, ...
  24, 331776, 12116574790945106558976, ...
  ...
		

Crossrefs

Cf. A000012 (n=1), A000142 (k=1), A001146, A003992, A036740 (k=2), A373342 (antidiagonal sums), A373343 (cyclic).

Programs

  • Mathematica
    A[n_,k_]:=(n!)^(n^(k-1)); Table[A[n-k+1,k],{n,6},{k,n}]//Flatten

Formula

A(n,k) = (n!)^(n^(k-1)).
A(2,n) = A001146(n-1).

A055627 From Vikram Seth's novel, "A Suitable Boy".

Original entry on oeis.org

1, 4, 216, 72576
Offset: 0

Views

Author

Jack Wasey (web(AT)jackwasey.com), Jun 05 2000

Keywords

Comments

The sequence appears in the book, enunciated by a mathematics professor. It seems he is trying to talk about (n!)^n (A036740), but that is a different sequence.

References

  • Vikram Seth, A Suitable Boy
Previous Showing 31-40 of 58 results. Next