cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A235478 Primes whose base-2 representation also is the base-8 representation of a prime.

Original entry on oeis.org

7, 11, 13, 29, 37, 43, 47, 53, 61, 67, 71, 73, 107, 139, 149, 199, 211, 227, 263, 293, 307, 311, 317, 331, 347, 383, 389, 421, 461, 467, 541, 593, 601, 619, 641, 643, 739, 811, 863, 907, 937, 1061, 1069, 1093, 1117, 1163, 1223, 1283, 1301, 1319, 1321, 1409, 1433, 1439, 1489, 1499, 1523, 1559, 1619, 1697, 1811, 1861, 1879
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
Appears to be a subsequence of A050150, A062090 and A216285.

Examples

			11 = 1011_2 and 1011_8 = 521 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235465A077722, A235266, A152079, A235475 - A235479, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[300]],PrimeQ[FromDigits[IntegerDigits[#,2],8]]&] (* Harvey P. Dale, Sep 25 2015 *)
  • PARI
    is(p,b=8)=isprime(vector(#d=binary(p),i,b^(#d-i))*d~)&&isprime(p)

A235481 Primes whose base-4 representation is also the base-9 representation of a prime.

Original entry on oeis.org

2, 3, 29, 41, 61, 89, 109, 149, 157, 281, 293, 313, 401, 421, 433, 593, 701, 709, 1013, 1049, 1061, 1069, 1097, 1117, 1277, 1289, 1301, 1553, 1601, 1709, 2069, 2137, 2237, 2309, 2377, 2437, 2477, 2689, 2729, 2749, 2797, 2957, 2969, 3001, 3061, 3109, 3169, 3329, 3361, 3389, 3457, 3533, 3701
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
Appears to be a subsequence of A197636.

Examples

			29 = 131_4 and 131_9 = 109 are both prime, so 29 is a term.
		

Crossrefs

Cf. A235473 - A235480, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@Range@600, PrimeQ[FromDigits[IntegerDigits[#, 4], 9]] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=9,c=4)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: Code only valid for b > c.

A267764 Numbers whose base-4 representation is a square when read in base 10.

Original entry on oeis.org

0, 1, 16, 25, 256, 289, 400, 441, 673, 1761, 1849, 4096, 4225, 4624, 4761, 6400, 6561, 7056, 7713, 10768, 13401, 28176, 29584, 65536, 66049, 67600, 68121, 73984, 74529, 76176, 76729, 77985, 102400, 103041, 104976, 112896, 113569, 123408, 150081, 172288, 214416, 450816, 473344, 501433, 519873
Offset: 1

Views

Author

M. F. Hasler, Jan 20 2016

Keywords

Comments

Trivially includes powers of 16, since 16^k = 100..00_4 = 10^(2k) when read as a base-10 number. Moreover, for any a(n) in the sequence, 16*a(n) is also in the sequence. One could call "primitive" the terms not of this form, these would be 1, 25 = 121_4, 289 = 10201_4, 441 = 12321_4, 673 = 22201_4, 1761 = 123201_4, ... These primitive terms include the subsequence 16^k + 2*4^k + 1 = (4^k+1)^2, k > 0, which yields A033934 when written in base 4.

Crossrefs

Cf. A267763 - A267769 for bases 3 through 9. The base-2 analog is A000302 = powers of 4.

Programs

  • Mathematica
    Select[Range[1000], IntegerQ[Sqrt[FromDigits[IntegerDigits[#, 4]]]] &] (* Alonso del Arte, Jan 23 2016 *)
  • PARI
    is(n,b=4,c=10)=issquare(subst(Pol(digits(n,b)),x,c))
    
  • Python
    A267764_list = [int(d,4) for d in (str(i**2) for i in range(10**6)) if max(d) < '4'] # Chai Wah Wu, Feb 23 2016

A267768 Numbers whose base-8 representation is a square when read in base 10.

Original entry on oeis.org

0, 1, 4, 14, 21, 30, 52, 64, 81, 100, 149, 174, 212, 241, 256, 289, 382, 405, 446, 532, 622, 661, 804, 849, 896, 1012, 1045, 1102, 1220, 1281, 1344, 1409, 1476, 1557, 1630, 1780, 1920, 2001, 2197, 2286, 2452, 2545, 2593, 2878, 2965, 3070, 3233, 3328, 3441, 3540, 3630, 3733, 4068, 4096
Offset: 1

Views

Author

M. F. Hasler, Jan 20 2016

Keywords

Comments

Trivially includes powers of 64, since 64^k = 100..00_8 = 10^(2k) when read in base 10. Moreover, for any a(n) in the sequence, 64*a(n) is also in the sequence. One could call "primitive" the terms not of this form. These primitive terms include the subsequence 64^k + 2*8^k + 1 = (8^k+1)^2, k > 0, which yields A033934 when written in base 8.
Motivated by the subsequence A267490 which lists the primes in this sequence.

Crossrefs

Cf. A267763 - A267769 for bases 3 through 9. The base-2 analog is A000302 = powers of 4.

Programs

  • Magma
    [n: n in [0..10^4] | IsSquare(Seqint(Intseq(n, 8)))]; // Vincenzo Librandi, Dec 28 2016
  • Mathematica
    Select[Range[0, 2 10^4], IntegerQ@Sqrt@FromDigits@IntegerDigits[#, 8] &] (* Vincenzo Librandi, Dec 28 2016 *)
  • PARI
    is(n,b=8,c=10)=issquare(subst(Pol(digits(n,b)),x,c))
    
  • Python
    A267768_list = [int(s, 8) for s in (str(i**2) for i in range(10**6)) if max(s) < '8'] # Chai Wah Wu, Jan 20 2016
    

A036961 Primes with digits (0,...,6) taken as base 7 and converted to base 10.

Original entry on oeis.org

2, 3, 5, 8, 10, 17, 22, 29, 31, 38, 43, 50, 52, 59, 71, 85, 94, 106, 115, 122, 127, 134, 143, 155, 157, 169, 185, 197, 211, 218, 220, 227, 239, 241, 248, 260, 262, 274, 290, 295, 304, 316, 323, 325, 332, 337, 353, 358, 365, 367, 379, 386, 388, 395, 409, 428
Offset: 1

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Examples

			a(n)=323 -> is 641{7} -> 641{10} is prime.
		

Crossrefs

Programs

  • Mathematica
    pd7[n_]:=With[{c=IntegerDigits[n]},If[Max[c]<7,FromDigits[c,7],Nothing]]; pd7/@Prime[Range[300]] (* Harvey P. Dale, Mar 14 2025 *)

A036962 Primes without {8, 9} as digits.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 101, 103, 107, 113, 127, 131, 137, 151, 157, 163, 167, 173, 211, 223, 227, 233, 241, 251, 257, 263, 271, 277, 307, 311, 313, 317, 331, 337, 347, 353, 367, 373, 401, 421, 431, 433, 443, 457, 461
Offset: 1

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Crossrefs

Subsequence of A038617.

Programs

  • Mathematica
    Select[FromDigits/@Tuples[Range[0,7],3],PrimeQ] (* Harvey P. Dale, Apr 13 2017 *)

A036963 Primes with digits (0,...,7) taken as base 8 and converted to base 10.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 15, 19, 25, 31, 33, 35, 39, 43, 49, 55, 57, 59, 65, 67, 71, 75, 87, 89, 95, 105, 111, 115, 119, 123, 137, 147, 151, 155, 161, 169, 175, 179, 185, 191, 199, 201, 203, 207, 217, 223, 231, 235, 247, 251, 257, 273, 281, 283, 291, 303, 305, 307, 311
Offset: 1

Views

Author

Patrick De Geest, Jan 04 1999

Keywords

Examples

			a(n)=191 -> is 277{8} -> 277{10} is prime.
		

Crossrefs

Extensions

Offset 1 from Michel Marcus, Oct 10 2019

A156059 Composite numbers whose binary representation reads as decimal prime.

Original entry on oeis.org

185, 247, 253, 295, 329, 355, 405, 425, 453, 471, 533, 539, 565, 583, 595, 671, 675, 689, 703, 755, 781, 785, 815, 841, 855, 925, 989, 1037, 1075, 1099, 1113, 1121, 1159, 1189, 1207, 1219, 1269, 1287, 1305, 1329, 1341, 1403, 1413, 1441, 1473, 1521, 1541
Offset: 1

Views

Author

Gerald Hillier, Feb 03 2009

Keywords

Examples

			185 is composite & 10111001 is prime.
313 is not in the sequence as it is prime in base 10.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2900], ! PrimeQ[#]&&PrimeQ[FromDigits[IntegerDigits[#, 2]]]&] (* Vincenzo Librandi, Apr 18 2013 *)

Extensions

More terms from R. J. Mathar, Feb 10 2009
Edited by N. J. A. Sloane, Mar 17 2010

A174416 Numbers whose binary expansion is a decimal nonprime.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2010

Keywords

Comments

Complement of A036952.

Examples

			For n=6, a(6) = 8; binary expansion of 8 = 1000 (nonprime).
		

Crossrefs

Cf. A036952, A174417 (binary expansion).

Programs

  • Maple
    remove(t -> isprime(convert(t,binary)), [$1..100]); # Robert Israel, Jun 13 2017
  • Mathematica
    Select[Range[80],!PrimeQ[FromDigits[IntegerDigits[#,2]]]&] (* Harvey P. Dale, May 10 2012 *)

Extensions

Corrected and extended by Harvey P. Dale, May 10 2012

A231478 Primes whose base-3 representation is also the base-8 representation of a prime.

Original entry on oeis.org

2, 7, 13, 31, 37, 43, 67, 73, 97, 193, 283, 307, 379, 457, 487, 499, 577, 619, 643, 727, 733, 757, 829, 1297, 1321, 1429, 1447, 1609, 1669, 1693, 2011, 2083, 2137, 2251, 2269, 2347, 2539, 2803, 2857, 2953, 2971
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			13 = 111_3 and 111_8 = 73 are both prime, so 13 is a term.
		

Crossrefs

Cf. A235471, A235265, A235266, A152079, A235461 - A235482, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@Range@500, PrimeQ@FromDigits[IntegerDigits[#, 3], 8] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=8,c=3)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.
Previous Showing 21-30 of 56 results. Next