cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A069493 6-full numbers: if p divides n then so does p^6.

Original entry on oeis.org

1, 64, 128, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 46656, 59049, 65536, 78125, 93312, 117649, 131072, 139968, 177147, 186624, 262144, 279936, 373248, 390625, 419904, 524288, 531441, 559872, 746496, 823543, 839808
Offset: 1

Views

Author

Benoit Cloitre, Apr 15 2002

Keywords

Comments

a(m) mod prime(n) > 0 for m < A258603(n); a(A258600(n)) = A030516(n) = prime(n)^6. - Reinhard Zumkeller, Jun 06 2015

Examples

			2^7*3^6 = 93312 is a member (although not of A076470).
		

Crossrefs

Cf. A036967, A036966, A001694. Different from A076470.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a069493 n = a069493_list !! (n-1)
    a069493_list = 1 : f (singleton z) [1, z] zs where
       f s q6s p6s'@(p6:p6s)
         | m < p6 = m : f (union (fromList $ map (* m) ps) s') q6s p6s'
         | otherwise = f (union (fromList $ map (* p6) q6s) s) (p6:q6s) p6s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a030516_list
    -- Reinhard Zumkeller, Jun 03 2015
    
  • Mathematica
    Join[{1},Select[Range[900000],Min[FactorInteger[#][[All,2]]]>5&]] (* Harvey P. Dale, Mar 03 2018 *)
  • PARI
    for(n=1,560000,if(n*sumdiv(n,d,isprime(d)/d^6)==floor(n*sumdiv(n,d,isprime(d)/d^6)),print1(n,",")))
    
  • Python
    from math import gcd
    from sympy import factorint, integer_nthroot
    def A069493(n):
        def f(x):
            c = n+x
            for y1 in range(1,integer_nthroot(x,11)[0]+1):
                if all(d<=1 for d in factorint(y1).values()):
                    for y2 in range(1,integer_nthroot(z2:=x//y1**11,10)[0]+1):
                        if gcd(y2,y1)==1 and all(d<=1 for d in factorint(y2).values()):
                            for y3 in range(1,integer_nthroot(z3:=z2//y2**10,9)[0]+1):
                                if gcd(y3,y1)==1 and gcd(y3,y2)==1 and all(d<=1 for d in factorint(y3).values()):
                                    for y4 in range(1,integer_nthroot(z4:=z3//y3**9,8)[0]+1):
                                        if gcd(y4,y1)==1 and gcd(y4,y2)==1 and gcd(y4,y3)==1 and all(d<=1 for d in factorint(y4).values()):
                                            for y5 in range(1,integer_nthroot(z5:=z4//y4**8,7)[0]+1):
                                                if gcd(y5,y1)==1 and gcd(y5,y2)==1 and gcd(y5,y3)==1 and gcd(y5,y4)==1 and all(d<=1 for d in factorint(y5).values()):
                                                    c -= integer_nthroot(z5//y5**7,6)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^5*(p-1))) = 1.0334657852594050612296726462481884631303137561267151463866539131591664... - Amiram Eldar, Jul 09 2020

A258569 Smallest prime factors of 4-full numbers, a(1)=1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 3, 2, 2, 5, 3, 2, 2, 2, 3, 7, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 11, 2, 5, 2, 7, 3, 2, 2, 2, 13, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 17, 2, 2, 2, 7, 2, 19, 2, 2, 3, 2, 2, 11, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 23, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258569 = a020639 . a036967
    
  • Mathematica
    Reap[Sow[1]; Do[f = FactorInteger[k]; If[Min[f[[All, 2]]] >= 4, Sow[f[[1, 1]]]], {k, 2, 10^6}]][[2, 1]] (* Jean-François Alcover, Sep 29 2020 *)
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 3, print1(f[1, 1], ", ")));} \\ Amiram Eldar, Sep 09 2024

Formula

a(n) = A020639(A036967(n));
a(A258601(n)) = A000040(n) and a(m) != A000040(n) for m < A258601(n).

A385049 The sum of the unitary divisors of n that are biquadratefree numbers (A046100).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 1, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 1, 84, 144, 68, 90
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A383763 at n = 32.
The number of these divisors is A365499(n), and the largest of them is A385007(n).

References

  • D. Suryanarayana, The number and sum of k-free integers <= x which are prime to n, Indian J. Math., Vol. 11 (1969), pp. 131-139.

Crossrefs

The unitary analog of A385006.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), A385046 (3-smooth), A385047 (power of 2), A385048 (cubefull), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e < 4, p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] < 4, f[i, 1]^f[i, 2] + 1, 1)); }

Formula

Multiplicative with a(p^e) = p^e + 1 for e <= 3, and a(p^e) = 1 for e >= 4.
a(n) = 1 if and only if n is 4-full (A036967).
a(n) <= A034448(n), with equality if and only if n is biquadratefree.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-2) - 1/p^(2*s-1) + 1/p^(3*s-3) - 1/p^(3*s-2) - 1/p^(4*s-3)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^2 + p) - 1/p^4) = 1.27769267395905900191... .

A076468 Perfect powers m^k where k >= 4.

Original entry on oeis.org

1, 16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 1296, 2048, 2187, 2401, 3125, 4096, 6561, 7776, 8192, 10000, 14641, 15625, 16384, 16807, 19683, 20736, 28561, 32768, 38416, 46656, 50625, 59049, 65536, 78125, 83521, 100000, 104976, 117649
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2002

Keywords

Comments

If p|n then at least p^4|n.
Subsequence of A036967. - R. J. Mathar, May 27 2011

Crossrefs

Programs

  • Haskell
    import qualified Data.Set as Set (null)
    import Data.Set (empty, insert, deleteFindMin)
    a076468 n = a076468_list !! (n-1)
    a076468_list = 1 : f [2..] empty where
       f xs'@(x:xs) s | Set.null s || m > x ^ 4 = f xs $ insert (x ^ 4, x) s
                      | m == x ^ 4  = f xs s
                      | otherwise = m : f xs' (insert (m * b, b) s')
                      where ((m, b), s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 19 2013
    
  • Mathematica
    a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 3, a = Append[a, n]; Print[n]], {n, 2, 131071}]; a
  • Python
    from sympy import mobius, integer_nthroot
    def A076468(n):
        def f(x): return int(n+2+x-integer_nthroot(x,4)[0]-(integer_nthroot(x,6)[0]<<1)-integer_nthroot(x,9)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]+integer_nthroot(x,k<<1)[0]+integer_nthroot(x,3*k)[0]-3) for k in range(5,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

Sum_{n>=1} 1/a(n) = 3 - zeta(2) - zeta(3) + Sum_{k>=2} mu(k)*(3 - zeta(k) - zeta(2*k) - zeta(3*k)) = 1.1473274274... . - Amiram Eldar, Dec 03 2022

A377022 Numbers whose prime factorization has exponents that have no digit 1 in their factorial-base representation (A255411).

Original entry on oeis.org

1, 16, 81, 625, 1296, 2401, 4096, 10000, 14641, 28561, 38416, 50625, 65536, 83521, 130321, 194481, 234256, 262144, 279841, 331776, 456976, 531441, 707281, 810000, 923521, 1185921, 1336336, 1500625, 1874161, 2085136, 2313441, 2560000, 2825761, 3111696, 3418801
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2024

Keywords

Comments

Numbers that are "powerful" when they are factorized into factors of the form p^(k!), where p is a prime and k >= 1, a factorization that is done using the factorial-base representation of the exponents in the prime factorization (see A376885 for more details). Each factor p^(k!) has a multiplicity that is larger than 1.

Crossrefs

Analogous to A001694.
Subsequence of A036967.

Programs

  • Mathematica
    expQ[n_] := expQ[n] = Module[{k = n, m = 2, r, s = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[r == 1, s = 0; Break[]]; m++]; s == 1]; seq[lim_] := Module[{p = 2, s = {1}, emax, es}, While[(emax = Floor[Log[p, lim]]) > 3, es = Select[Range[0, emax], expQ]; s = Union[s, Select[Union[Flatten[Outer[Times, s, p^es]]], # <= lim &]]; p = NextPrime[p]]; s]; seq[4*10^6]
  • PARI
    isexp(n) = {my(k = n, m = 2, r); while([k, r] = divrem(k, m); k != 0 || r != 0, if(r == 1, return(0)); m++); 1;}
    is(k) = {my(e = factor(k)[, 2]); for(i = 1, #e, if(!isexp(e[i]), return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^A255411(k)) = 1.07819745085315583226... .

A297075 Lexicographically earliest sequence of distinct positive numbers such that the prime factorizations of two consecutive terms never share a prime exponent >= 1.

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 9, 6, 16, 7, 25, 10, 27, 11, 32, 12, 64, 13, 36, 14, 49, 15, 72, 17, 81, 18, 125, 19, 100, 21, 108, 22, 121, 23, 128, 20, 216, 26, 144, 24, 169, 29, 196, 30, 200, 31, 225, 33, 243, 28, 256, 34, 288, 35, 289, 37, 324, 38, 343, 39, 361, 40, 400
Offset: 1

Views

Author

Rémy Sigrist, Dec 25 2017

Keywords

Comments

For any n > 0, if a prime number p divides a(n) and a prime number q divides a(n+1), then the p-adic valuation of a(n) differs from the q-adic valuation of a(n+1).
Equivalently, for any n > 0, A297404(a(n)) AND A297404(a(n+1)) = 0 (where AND denotes the bitwise AND operator).
This sequence is a permutation of the natural numbers, with inverse A297403.
The curves visible in the logarithmic scatterplot of the first terms seems to be related to a(n) belonging to A038109 and to A052485 (see Links section).
Lexicographically earliest sequence of distinct numbers such that gcd(A181819(a(n)), A181819(a(n+1))) = 1. - Peter Munn, Oct 02 2023
From Peter Munn, Jan 25 2024: (Start)
The sequence bisections might be characterized as being monotonic with interruptions. The major interruptions are apparent from the coloring in the author's 15000 term logarithmic scatterplot -- they occur where the occurrence of terms belonging to A038109 switches between the bisections.
Other interruptions are too small to be seen in the scatterplot. Some relate to numbers that have both the square of a prime and cube of a prime as a unitary divisor (a subset of A038109).
Two such terms are a(4154) = 1350 and a(4156) = 1368, interrupting the even bisection's monotonicity after a(4152) = 1380. These 3 terms are each followed by a 4-full number (A036967): a(4153) = 1185921, a(4155) = 1229312, a(4157) = 1250000. Then we see an odd bisection interruption with a(4159) = 1191016.
(End)

Examples

			The first terms, alongside the corresponding sets of prime exponents, are:
  n       a(n)    Set of prime exponents of a(n)
  --      ----    ------------------------------
   1       1      {}
   2       2      {1}
   3       4      {2}
   4       3      {1}
   5       8      {3}
   6       5      {1}
   7       9      {2}
   8       6      {1, 1}
   9      16      {4}
  10       7      {1}
  11      25      {2}
  12      10      {1, 1}
  13      27      {3}
  14      11      {1}
  15      32      {5}
  16      12      {2, 1}
  17      64      {6}
  18      13      {1}
  19      36      {2, 2}
  20      14      {1, 1}
		

Crossrefs

Cf. A001694 (numbers in odd bisection), A036967, A038109, A052485 (numbers in even bisection), A181819, A297403 (inverse), A297404.

Programs

  • Mathematica
    Nest[Append[#, Block[{k = 3, m = FactorInteger[#[[-1]] ][[All, -1]]}, While[Nand[FreeQ[#, k], ! IntersectingQ[m, FactorInteger[k][[All, -1]]]], k++]; k]] &, {1, 2}, 61] (* Michael De Vlieger, Dec 29 2017 *)

A358250 Numbers whose square has a number of divisors coprime to 210.

Original entry on oeis.org

1, 32, 64, 243, 256, 512, 729, 2048, 3125, 6561, 7776, 15552, 15625, 16384, 16807, 19683, 23328, 32768, 46656, 62208, 100000, 117649, 124416, 161051, 177147, 186624, 200000, 209952, 262144, 371293, 373248, 390625, 419904, 497664, 500000, 537824, 629856, 759375
Offset: 1

Views

Author

Michael De Vlieger, Dec 03 2022

Keywords

Comments

210 is the product of the smallest 4 primes.
Numbers k such that gcd(d(k^2), 210) = 1, where d(k) is the number of divisors of k (A000005).
Also numbers with no exponents = 1 mod 3, 2 mod 5, or 3 mod 7; also numbers whose square has a number of divisors coprime to 105. - Charles R Greathouse IV, Dec 08 2022

Crossrefs

Subsequence of A069492 and hence of A036967, A036966, and A001694.
Subsequence of other sequences of numbers k such that gcd(d(k^2), m) = 1: A350014 (m=6), A354179 (m=30).

Programs

  • Mathematica
    With[{nn = 2^20}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], CoprimeQ[DivisorSigma[0, #^2], 210] &]]
  • PARI
    is(n,f=factor(n))=if(n<32, return(n==1)); my(t=f[,2]%105, N=19200959813818273241621521446046); for(i=1,#t, if(bittest(N,t[i]), return(0))); 1 \\ Charles R Greathouse IV, Dec 08 2022

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (Sum_{k=2..210, gcd(k-1,210)=1} p^(k/2))/(p^105-1) = 1.05981355805... . - Amiram Eldar, Dec 06 2022

A363177 Primitive abundant numbers (A071395) that are cubefull numbers (A036966).

Original entry on oeis.org

26376098024367, 33912126031329, 1910383099764867, 2792098376579421, 5229860083034911875, 6886512413632368153, 8815747507513708671, 28966027524687899919, 42200802302982406288, 89594138836162749375, 224439112362213402759, 288564573037131517833, 512767531125033485625
Offset: 1

Views

Author

Amiram Eldar, May 19 2023

Keywords

Comments

It seems that this sequence is also the intersection of A036966 and A091191 (checked up to 10^27).
Are there terms that are 4-full numbers (A036967)? There are none below 10^27.

Crossrefs

Intersection of A036966 and A071395.
Subsequence of A363169 and A363175.
A306797 is a subsequence.

A372405 Exponentially powerful numbers whose prime factorization exponents are all powerful numbers > 1.

Original entry on oeis.org

1, 16, 81, 256, 512, 625, 1296, 2401, 6561, 10000, 14641, 19683, 20736, 28561, 38416, 41472, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 314928, 320000, 390625, 456976, 614656, 707281, 810000, 923521, 1185921, 1229312, 1336336, 1500625, 1679616
Offset: 1

Views

Author

David James Sycamore, Apr 29 2024

Keywords

Comments

In other words, numbers m such that if p^k is the greatest power of any prime p which divides m, then k is a term > 1 in A001694.
Subsequence of A001694 (since all prime exponents are > 1).
Compare with A361177, of which this is a subsequence (see Formula).
Distinct from A277562; A277652(26) = 331776 = 2^12 * 3^4 is not in this sequence. - Michael De Vlieger, Apr 30 2024
1 and 41472 are two terms here that are not in A277562. - David A. Corneth, Apr 30 2024

Examples

			16 = 2^4 and 4 = A001694(2) is a powerful number.
a(7) = 1296 = 2^4*3^4.
a(12) = 19683 = 3^9 (9 = A001694(4) is a powerful number).
		

Crossrefs

Intersection of A001694 and A361177.
Subsequence of A036967.

Programs

  • Mathematica
    nn = 2^21; f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]]; Select[Union@ Flatten@ Table[a^7*b^6*c^5*d^4, {d, Surd[nn, 4]}, {c, Surd[nn/d^4, 5]}, {b, Surd[nn/(c^5*d^4), 6]}, {a, Surd[nn/(b^6*c^5*d^4), 7]}], AllTrue[FactorInteger[#][[All, -1]], Divisible[#, f[#]^2] &] &] (* Michael De Vlieger, Apr 29 2024 *)
  • PARI
    isok(k) = if (ispowerful(k), my(f=factor(k)[,2]); #select(ispowerful, f) == #f); \\ Michel Marcus, Apr 30 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=2} 1/p^A001694(k)) = 1.08410926642148594327... . - Amiram Eldar, May 12 2024

Extensions

More terms from Michael De Vlieger, Apr 29 2024

A372841 4-full numbers that are not prime powers.

Original entry on oeis.org

1296, 2592, 3888, 5184, 7776, 10000, 10368, 11664, 15552, 20000, 20736, 23328, 31104, 34992, 38416, 40000, 41472, 46656, 50000, 50625, 62208, 69984, 76832, 80000, 82944, 93312, 100000, 104976, 124416, 139968, 151875, 153664, 160000, 165888, 186624, 194481, 200000
Offset: 1

Views

Author

Michael De Vlieger, May 14 2024

Keywords

Comments

Numbers k such that rad(k)^4 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 3.
Proper subset of the following sequences: A001694, A036966, A036967, A126706, A286708, A372695.
Smallest term k with omega(k) = m is k = A002110(m)^4.

Examples

			Table of smallest 12 terms:
   n      a(n)
  -----------------------
   1     1296 = 2^4 * 3^4
   2     2592 = 2^5 * 3^4
   3     3888 = 2^4 * 3^5
   4     5184 = 2^6 * 3^4
   5     7776 = 2^5 * 3^5
   6    10000 = 2^4 * 5^4
   7    10368 = 2^7 * 3^4
   8    11664 = 2^4 * 3^6
   9    15552 = 2^6 * 3^5
  10    20000 = 2^5 * 5^4
  11    20736 = 2^8 * 3^4
  12    23328 = 2^5 * 3^6
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 200000}, Rest@ Select[Union@ Flatten@ Table[a^7 * b^6 * c^5 * d^4, {d, Surd[nn, 4]}, {c, Surd[nn/(d^4), 5]}, {b, Surd[nn/(c^5 * d^4), 6]}, {a, Surd[nn/(b^6 * c^5 * d^4), 7]}], Not@*PrimePowerQ]]
  • Python
    from math import gcd
    from sympy import primepi, integer_nthroot, factorint
    def A372841(n):
        def f(x):
            c = n+x+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(4, x.bit_length()))
            for u in range(1,integer_nthroot(x,7)[0]+1):
                if all(d<=1 for d in factorint(u).values()):
                    for w in range(1,integer_nthroot(a:=x//u**7,6)[0]+1):
                        if gcd(w,u)==1 and all(d<=1 for d in factorint(w).values()):
                            for y in range(1,integer_nthroot(z:=a//w**6,5)[0]+1):
                                if gcd(w,y)==1 and gcd(u,y)==1 and all(d<=1 for d in factorint(y).values()):
                                    c -= integer_nthroot(z//y**5,4)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Intersection of A036967 and A024619.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) - Sum_{p prime} 1/(p^3*(p-1)) - 1 = 0.0026996042121456100761... . - Amiram Eldar, May 17 2024
Previous Showing 11-20 of 23 results. Next