cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A229139 Smallest m such that Fibonacci(2n-1) = m^2 + k^2.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 9, 21, 34, 55, 89, 73, 13, 377, 610, 987, 64, 244, 4155, 4554, 10946, 2191, 28657, 15857, 74957, 34022, 29811, 50481, 134104, 832040, 162589, 387938, 711703, 1556305, 6229800, 4173137, 4059539, 1972951, 51797450, 4866315, 165580141, 46049477, 202620393, 348451533, 181781990
Offset: 1

Views

Author

Ralf Stephan, Sep 15 2013

Keywords

Comments

Every odd-indexed Fibonacci number (A000045) is a sum of two squares (see A124134).
Which of the a(n) are not Fibonacci numbers?

Examples

			A000045(2*6-1) = 89 = 5^2 + 8^2 so a(6)=5.
A000045(2*8-1) = 610 = 9^2 + 23^2 = 13^2 + 21^2, so a(8)=9.
		

Crossrefs

Programs

  • Haskell
    a229139 1 = 0
    a229139 n = head $
       dropWhile (== 0) $ map (a037213 . (t -) . (^ 2)) [s, s - 1 ..]
       where t = a000045 (2 * n - 1); s = a000196 t
    -- Reinhard Zumkeller, Oct 11 2013
  • PARI
    for(n=1, 10^6, t=fibonacci(2*n-1);s=sqrtint(t);forstep(i=s,1,-1,if(issquare(t-i*i),print1(sqrtint(t-i*i), ",");break)))
    

A337177 Sum of the divisors d of n such that d is not equal to n/d.

Original entry on oeis.org

0, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 28, 14, 24, 24, 27, 18, 39, 20, 42, 32, 36, 24, 60, 26, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 85, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 50, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 119, 84, 144, 68, 126
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 28 2021

Keywords

Comments

a(n) = n+1 iff n is prime or n is the square of a prime (A000430). - Bernard Schott, Jan 29 2021

Crossrefs

Cf. A000203, A037213 (with equal instead of not equal).

Programs

  • Mathematica
    Table[Sum[k*(1 - KroneckerDelta[k, n/k]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]
  • PARI
    a(n) = sumdiv(n, d, d*(d!=n/d)); \\ Michel Marcus, Jan 29 2021
    
  • PARI
    a(n) = sigma(n) - issquare(n)*sqrtint(n) \\ David A. Corneth, Jan 30 2021

Formula

a(n) = Sum_{d|n} d * (1 - [d = n/d]), where [ ] is the Iverson bracket.
a(n) = sigma(n) - A037213(n). - David A. Corneth, Jan 30 2021
Previous Showing 31-32 of 32 results.