cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A173208 Squarefree Fibonacci numbers F such that F+1 and F-1 are also squarefree.

Original entry on oeis.org

2, 34, 610, 10946, 196418, 3524578, 63245986, 1134903170, 6557470319842, 117669030460994, 37889062373143906, 679891637638612258, 12200160415121876738, 3928413764606871165730, 1264937032042997393488322
Offset: 1

Views

Author

Keywords

Comments

See A037918 for an implicit list of the squarefree F.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Union[Last/@FactorInteger[n]][[ -1]];lst={};Do[fibo=Fibonacci[n]; If[f[fibo-1]==1&&f[fibo+1]==1&&f[fibo]==1,AppendTo[lst,fibo]],{n, 4,200}];lst
    Select[Fibonacci[Range[200]],And@@SquareFreeQ/@{#-1,#,#+1}&] (* Harvey P. Dale, Nov 14 2011 *)
  • Python
    from sympy import factorint
    A173208_list = [2]
    a, b = 2, 3
    for _ in range(10**2):
        if max(factorint(b).values()) <= 1 and max(factorint(b-1).values()) <= 1 and max(factorint(b+1).values()) <= 1:
            A173208_list.append(b)
        a, b = b, a + b # Chai Wah Wu, Jun 08 2015

Extensions

Description simplified by R. J. Mathar, Feb 15 2010
Initial term 2 added, since 1 by convention is squarefree (see A005117) by Harvey P. Dale, Nov 15 2011

A250093 Squarefree part of Fibonacci(n^2).

Original entry on oeis.org

1, 3, 34, 987, 3001, 103683, 7778742049, 10610209857723, 37889062373143906, 14168993927170476603, 8670007398507948658051921, 964523271222730372229194083, 93202207781383214849429075266681969, 40934782466626840596168752972961528246147
Offset: 1

Views

Author

Vincenzo Librandi, Nov 12 2014

Keywords

Comments

Also, the smallest number such that a(n)*Fibonacci(n^2) is a square.
Conjecture: the only primes in this sequence are 3 and 3001.

Crossrefs

Programs

  • Magma
    [SquareFree(Fibonacci(n^2)): n in [1..20]];
    
  • Mathematica
    Table[Times@@Power@@@({#[[1]], Mod[#[[2]], 2]}&/@FactorInteger[Fibonacci[n^2]]), {n, 20}]
  • PARI
    for(n=1, 60, print1(core(fibonacci(n^2)), ", "))

Formula

a(n) = A069110(n^2).

A258575 Numbers n such that Lucas(n)-Fibonacci(n) is squarefree.

Original entry on oeis.org

0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 53, 54, 56, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 93, 95, 96, 98, 99, 102, 104, 105
Offset: 1

Views

Author

Vincenzo Librandi, Jun 04 2015

Keywords

Comments

These numbers belong to the sequence A007494 (see Chai Wah Wu argumentation in A258574).
Also numbers n such that 2*Fibonacci(n-1) is squarefree. [Bruno Berselli, Jun 05 2015]
A258575(n) = A258574(n+1)-1. - Chai Wah Wu, Jun 09 2015

Crossrefs

Programs

  • Magma
    [0] cat [n: n in [2..150] | IsSquarefree(Lucas(n)-Fibonacci(n))];
    
  • Mathematica
    Select[Range[0, 200], SquareFreeQ[LucasL[#] - Fibonacci[#]] &]
  • Sage
    [n for n in (0..110) if is_squarefree(2*fibonacci(n-1))] # Bruno Berselli, Jun 05 2015

Extensions

Name corrected by Bruno Berselli, Jun 05 2015

A174279 Smallest k such that tau(Fibonacci(k)) = 2^n.

Original entry on oeis.org

1, 3, 6, 15, 18, 44, 30, 54, 128, 80, 138, 90, 162, 198, 308, 294, 210, 460, 288, 270, 378, 510, 680, 594, 920, 570, 690, 1280, 1190, 630, 1040, 1386, 810
Offset: 0

Views

Author

Michel Lagneau, Mar 15 2010

Keywords

Comments

Smallest k such that A000005(A000045(k)) = 2^n.
The multiplicative property of the tau-function implies that the Fibonacci(k) has a prime factor representation p_1^e_1*p_2^e_2*... where (e_1+1)*(e_2+1)*... is a power of 2, that is, the exponents are in {1,3,7,15,...}. This adds for example the squarefree Fibonacci numbers with indices from A037918 to the list of candidates. - R. J. Mathar, Oct 11 2011

Examples

			a(0) =  1 because tau(Fibonacci(1))  = tau(1)   = 2^0 = 1.
a(1) =  3 because tau(Fibonacci(3))  = tau(2)   = 2^1 = 2.
a(2) =  6 because tau(Fibonacci(6))  = tau(8)   = 2^2 = 4.
a(3) = 15 because tau(Fibonacci(15)) = tau(610) = 2^3 = 8.
		

References

  • Majorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.

Crossrefs

Programs

  • Maple
    with(numtheory):for p from 1 to 100 do:indic:=0:u0:=0:u1:=1:for n from 2 to 1000 while(indic=0)do:s:=u0+u1:u0:=u1:u1:=s:if tau(s)= 2^p and indic=0 then print(p): print(n): indic:=1:else fi:od:od:

Extensions

a(27)-a(32) from Amiram Eldar, Oct 14 2019
Previous Showing 11-14 of 14 results.