cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A006481 Euler characteristics of polytopes.

Original entry on oeis.org

1, 2, 3, 4, 5, 11, 21, 36, 57, 127, 253, 463, 793, 1717, 3433, 6436, 11441, 24311, 48621, 92379, 167961, 352717, 705433, 1352079, 2496145, 5200301, 10400601, 20058301, 37442161
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Very like A051920. Cf. A320996.

Programs

Formula

Numbers suggest that for n not divisible by 4, a(n) = C(n, [n/2]) + 1 and C(n, [(n-1)/2]) + 1 otherwise (see A051920 and A037952+1). - Ralf Stephan, Jun 07 2005

A116399 Triangle whose k-th column has e.g.f. sum{j=0..k, Bessel_I(k+j,2x)}.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 0, 3, 1, 1, 6, 4, 5, 1, 1, 0, 10, 5, 6, 1, 1, 20, 15, 21, 7, 7, 1, 1, 0, 35, 21, 28, 8, 8, 1, 1, 70, 56, 84, 36, 37, 9, 9, 1, 1, 0, 126, 84, 120, 45, 46, 10, 10, 1, 1, 252, 210, 330, 165, 175, 56, 56, 11, 11, 1, 1
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Second column is A037952. Third column is the double of A002054. Product of A007318 and A116399 is A116401.

Examples

			Triangle begins
1,
0, 1,
2, 1, 1,
0, 3, 1, 1,
6, 4, 5, 1, 1,
0, 10, 5, 6, 1, 1,
20, 15, 21, 7, 7, 1, 1
		

A143359 Triangle read by rows, T(n,k) = number of symmetric ordered trees with n edges and root degree k (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 1, 1, 6, 0, 3, 0, 1, 10, 2, 4, 2, 1, 1, 20, 0, 10, 0, 4, 0, 1, 35, 5, 15, 5, 5, 3, 1, 1, 70, 0, 35, 0, 15, 0, 5, 0, 1, 126, 14, 56, 14, 21, 9, 6, 4, 1, 1, 252, 0, 126, 0, 56, 0, 21, 0, 6, 0, 1, 462, 42, 210, 42, 84, 28, 28, 14, 7, 5, 1, 1, 924, 0, 462, 0, 210, 0, 84, 0, 28, 0, 7, 0, 1
Offset: 1

Views

Author

Emeric Deutsch, Aug 15 2008

Keywords

Comments

Number of symmetric Dyck n-paths with k returns to the x-axis. - David Scambler, Aug 16 2012

Examples

			Triangle starts:
   1;
   1,  1;
   2,  0,  1;
   3,  1,  1,  1;
   6,  0,  3,  0,  1;
  10,  2,  4,  2,  1,  1;
  20,  0, 10,  0,  4,  0,  1;
  35,  5, 15,  5,  5,  3,  1,  1;
		

Crossrefs

Cf. A001405, A000108 (column 2), A143360, A037952 (column 3).

Programs

  • Maple
    C:=proc(z) options operator, arrow: (1/2-(1/2)*sqrt(1-4*z))/z end proc: S:=1/(1-z-z^2*C(z^2)): G:=(1+t*z*S)/(1-t^2*z^2*C(z^2))-1: Gser:=simplify(series(G, z=0,15)): for n to 13 do P[n]:=coeff(Gser,z,n) end do: for n to 13 do seq(coeff(P[n],t,j),j=1..n) end do; # yields sequence in triangular form
  • Mathematica
    Module[{nmax = 13, G, C, S},
       G = (1 + t*z*S[z])/(1 - t^2*z^2*C[z^2]) - 1;
       S[z_] = 1/(1 - z - z^2*C[z^2]) ;
       C[z_] = (1 - Sqrt[1 - 4 z])/(2 z);
       CoefficientList[#/t + O[t]^nmax, t]& /@
       CoefficientList[G/z + O[z]^nmax, z]
    ] // Flatten (* Jean-François Alcover, Apr 09 2024 *)

Formula

G.f. = (1+t*z*S)/(1-t^2*z^2*C(z^2))-1, where S = 1/(1-z-z^2*C(z^2)) is the g.f. of the sequence binomial(n, floor(n/2)) (A001405) and C(z) = (1-sqrt(1-4z))/(2z) is the generating function of the Catalan numbers (A000108).
Sum_{k=1..n} T(n,k) = A001405(n).
T(n,1) = A001405(n-1).
Sum_{k=1..n} k*T(n,k) = A143360(n).
Sum_{k=2..n} T(n,k) = A037952(n). - R. J. Mathar, Sep 24 2021

A369589 Triangular array read by rows: T(m,n) = number of Yamanouchi words over the alphabet {1, 2, ..., n} of length m that start with n, m >= 1, n = 1..m.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 4, 5, 3, 1, 1, 10, 14, 11, 4, 1, 1, 15, 35, 31, 19, 5, 1, 1, 35, 90, 106, 69, 29, 6, 1, 1, 56, 245, 323, 265, 127, 41, 7, 1, 1, 126, 644, 1093, 971, 583, 209, 55, 8, 1, 1, 210, 1716, 3439, 3644, 2446, 1106, 319, 71, 9, 1, 1, 462, 4707, 11716, 13771, 10616, 5323, 1904, 461, 89, 10, 1
Offset: 1

Views

Author

Max Alekseyev, Jan 26 2024

Keywords

Examples

			Array starts with
  m=1: 1
  m=2: 1,  1
  m=3: 1,  1,  1
  m=4: 1,  3,  2,  1
  m=5: 1,  4,  5,  3,  1
  m=6: 1, 10, 14, 11,  4, 1
  m=7: 1, 15, 35, 31, 19, 5, 1
		

Crossrefs

Row sums: A238728.
Columns: A000012 (n=1), A037952 (n=2), A369591 (n=3).

A378060 a(n) = binomial(n, floor((n-1)/2))^2.

Original entry on oeis.org

0, 1, 1, 9, 16, 100, 225, 1225, 3136, 15876, 44100, 213444, 627264, 2944656, 9018009, 41409225, 130873600, 590976100, 1914762564, 8533694884, 28210561600, 124408576656, 418151049316, 1828114918084, 6230734868736, 27043120090000, 93271169290000, 402335398890000
Offset: 0

Views

Author

Peter Luschny, Dec 03 2024

Keywords

Comments

Number of walks of length n with unit steps in all four directions (NSWE), starting at the origin and ending on the y-axis, never going below the x-axis and the end point having a positive height.

Examples

			The 16 walks of length 4: NNNN, NNNS, NNSN, NNEW, NNWE, NSNN, NENW, NEWN, NWNE, NWEN, ENNW, ENWN, EWNN, WNNE, WNEN, WENN.
		

Crossrefs

Cf. A060150 (odd bisection), A337900 (even bisection), A037952, A378061.

Programs

  • Julia
    # Generates the walks (for illustration only).
    function aCount(n::Int)
        a = [""]
        c = 0
        for w in a
            if length(w) == n
                if (count('N', w) != count('S', w) && count('W', w) == count('E', w))
                    c += 1
                    # println(w)
                end
            else
                for j in "NSEW"
                    u = string(w, j)
                    if count('N', u) >= count('S', u)
                       push!(a, u)
        end end end end
        return c
    end
    println([aCount(n) for n in 0:11])
  • Maple
    a := n -> binomial(n, iquo(n+1, 2) - 1)^2: seq(a(n), n = 0..27);
    a := proc(n) option remember; if n < 2 then n else ((32*n^5 - 48*n^4 + 16*n^2)*a(n - 2) + (8*n^4 - 20*n^2)*a(n - 1))/(2*(n - 1)^2*(n - 1/2)*(n + 2)^2) fi end:
    # Alternative:
    egf := BesselI(0, 2*x)^2 + BesselI(1, 2*x)*BesselI(0, 2*x)*(1 - 1/x):
    ser := series(egf, x, 29): seq(n!*coeff(ser, x, n), n = 0..27);
  • Mathematica
    Array[Binomial[#, Floor[(# + 1)/2] - 1]^2 &, 28, 0] (* Michael De Vlieger, Dec 04 2024 *)

Formula

a(n) = n!*[x^n] (BesselI(0, 2*x)^2 + BesselI(1, 2*x)*BesselI(0, 2*x)*(1 - 1/x)).
a(n) = [x^n] (((8*x^2 + 2*x)*EllipticK(4*x) - Pi*(1 + x) + 2*EllipticE(4*x))/(4*x^2*Pi)).
a(n) = [x^n] (x*hypergeom([1,3/2,3/2], [2,2], 16*x^2) + x^2*hypergeom([3/2,3/2,2,2], [1,3,3], 16*x^2)).
a(n) = Sum_{k=0..n} (-1)^(n-k+N)*C(n-k, N)*C(n, k)*C(n+k, k), where N = floor((n-1)/2) and C = binomial.
Recurrence: a(n) = ((32*n^5 - 48*n^4 + 16*n^2)*a(n - 2) + (8*n^4 - 20*n^2)*a(n - 1))/(2*(n - 1)^2*(n - 1/2)*(n + 2)^2).
a(n) = Sum_{k=1..n} A378061(n, k).

A056641 Least positive integer k for which (b+1)^k is not palindromic in base b, b = 2, 3, 4, ...

Original entry on oeis.org

4, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 2

Views

Author

Helge Robitzsch (hrobi(AT)math.uni-goettingen.de), Aug 11 2000

Keywords

Comments

Sequence of run lengths is C(n,[ (n-1)/2 ]) (= A037952), n=1,2,3,...; sequence of b where a(b) != a(b-1), b >= 3, is C(b-1,[ (b-1)/2 ]) (= A001405).

Examples

			The 4th term is 4 because base 5 representations of (5+1)^1 = 11, (5+1)^2 = 121, (5+1)^3 = 1331, are all palindromic, while (5+1)^4 = 20141 is not.
		

Crossrefs

Programs

  • Mathematica
    palq[x_] := x == Reverse[x] Table[x = 0; While[palq[IntegerDigits[(t + 1)^x, t]], ++x]; x, {t, START, FINISH}] (* Dylan Hamilton, Aug 15 2010 *)

A191525 Triangle read by rows: T(n,k) is the number of left factors of Dyck paths of length n and having k hills; a hill is a (1,1)-step starting at level 0 and followed by a (1,-1)-step.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 1, 1, 7, 2, 1, 13, 5, 1, 1, 24, 8, 2, 1, 46, 16, 6, 1, 1, 86, 28, 9, 2, 1, 166, 58, 19, 7, 1, 1, 314, 103, 32, 10, 2, 1, 610, 211, 71, 22, 8, 1, 1, 1163, 382, 121, 36, 11, 2, 1, 2269, 781, 261, 85, 25, 9, 1, 1, 4352, 1432, 456, 140, 40, 12, 2, 1, 8518, 2920, 976, 316, 100, 28, 10, 1, 1
Offset: 0

Views

Author

Emeric Deutsch, Jun 06 2011

Keywords

Comments

Row n contains 1+floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,0)=A191526(n).
Sum(k*T(n,k), k>=0) = A037952(n-1).

Examples

			T(5,1)=2 because we have (UD)UUD and (UD)UUU, where U=(1,1) and D=(1,-1) (the hills are shown between parentheses).
Triangle starts:
  1;
  1;
  1,1;
  2,1;
  4,1,1;
  7,2,1;
  13,5,1,1;
		

Crossrefs

Programs

  • Maple
    c := ((1-sqrt(1-4*z^2))*1/2)/z^2: G := 1/((1-z*c)*(1-z^4*c^2-t*z^2)): Gser := simplify(series(G, z = 0, 19)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z)=1/((1-z*c)*(1-z^4*c^2-t*z^2)), where c=(1-sqrt(1-4*z^2))/(2*z^2) is the Catalan function with argument z^2.

A335322 Triangle read by rows: T(n, k) = binomial(n, floor((n+k+1)/2)) with k <= n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 10, 5, 5, 1, 1, 15, 15, 6, 6, 1, 1, 35, 21, 21, 7, 7, 1, 1, 56, 56, 28, 28, 8, 8, 1, 1, 126, 84, 84, 36, 36, 9, 9, 1, 1, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1, 792, 792, 495, 495, 220, 220, 66, 66, 12, 12, 1, 1
Offset: 1

Views

Author

Stefano Spezia, May 31 2020

Keywords

Comments

T(n, k) is a tight upper bound of the cardinality of an intersecting Sperner family or antichain of the set {1, 2,..., n}, where every collection of pairwise independent subsets is characterized by an intersection of cardinality at least k (see Theorem 1.3 in Wong and Tay).
Equals A061554 with the first row of the array (resp. the first column of the triangle) removed. - Georg Fischer, Jul 26 2023

Examples

			The triangle T(n, k) begins
n\k|  1   2   3   4   5   6   7   8
---+-------------------------------
1  |  1
2  |  1   1
3  |  3   1   1
4  |  4   4   1   1
5  | 10   5   5   1   1
6  | 15  15   6   6   1   1
7  | 35  21  21   7   7   1   1
8  | 56  56  28  28   8   8   1   1
...
		

Crossrefs

Cf. A037951 (k=3), A037952 (k=1), A037953 (k=5), A037954 (k=7), A037955 (k=2), A037956 (k=4), A037957 (k=6), A037958 (k=8), A045621 (row sums).

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n,Floor[(n+k+1)/2]]; Table[T[n,k],{n,12},{k,n}]//Flatten
  • PARI
    T(n, k) = binomial(n, (n+k+1)\2);
    vector(10, n, vector(n, k, T(n, k))) \\ Michel Marcus, Jun 01 2020

Formula

T(n, k) = A007318(n, A004526(n+k+1)) with k <= n.

A348013 Triangle by rows: T(n,k) is the number of n-step Dyck paths with k catastrophes.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 4, 7, 3, 1, 10, 14, 12, 4, 1, 15, 37, 31, 18, 5, 1, 35, 74, 90, 56, 25, 6, 1, 56, 176, 216, 179, 90, 33, 7, 1, 126, 352, 552, 492, 315, 134, 42, 8, 1, 210, 794, 1269, 1362, 966, 510, 189, 52, 9, 1, 462, 1588, 3033, 3480, 2890, 1716, 777, 256, 63, 10, 1, 792, 3473
Offset: 1

Views

Author

R. J. Mathar, Sep 24 2021

Keywords

Comments

T(n,k) is the number chains of k "incomplete" Dyck paths with a total length of n. (Incomplete Dyck paths are those not ending at the horizontal axis.) Each of the k subsections of the paths does not return to the horizontal axis; they are commonly referred to as paths with catastrophes (like black Fridays on stock market charts).

Examples

			The triangle starts
    1
    1    1
    3    2    1
    4    7    3    1
   10   14   12    4    1
   15   37   31   18    5    1
   35   74   90   56   25    6    1
   56  176  216  179   90   33    7    1
  126  352  552  492  315  134   42    8    1
  210  794 1269 1362  966  510  189   52    9    1
  462 1588 3033 3480 2890 1716  777  256   63   10    1
  792 3473 6781 8901 8060 5521 2835 1130  336   75   11    1
T(1,1)=1 counts U| where the vertical bar indicates starting a new path at the horizontal axis (the catastrophe).
T(2,1)=1 counts UU|.
T(4,1)=4 counts UUUU|, UUUD|, UUDU|, UDUU|.
T(3,2)=2 counts UU|U| and U|UU| .
T(4,2)=7 counts U|UUU|, U|UUD|, U|UDU|, UU|UU|, UUU|U|, UUD|U| and UDU|U|.
		

Crossrefs

Cf. A348012 (row sums), A037952 (k=1), A191389 (k=2).

Formula

T(n,1) = A037952(n).
T(n,2) = A191389(n+2).
The generating function of column k is g037952(x)^k, where g037952(x) = x +x^2 +3*x^3+... is the generating function of A037952.
Previous Showing 21-29 of 29 results.