cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A358263 Numbers with a record number of noninfinitary square divisors.

Original entry on oeis.org

1, 16, 144, 256, 1296, 2304, 20736, 57600, 331776, 518400, 2822400, 8294400, 12960000, 25401600, 132710400, 207360000, 228614400, 406425600, 635040000, 2057529600, 3073593600, 6502809600, 10160640000, 27662342400, 31116960000, 51438240000, 76839840000, 248961081600
Offset: 1

Views

Author

Amiram Eldar, Nov 06 2022

Keywords

Comments

Numbers m such that A358261(m) > A358261(k) for all k < m.
The corresponding record values are 0, 1, 2, 3, 5, 6, 11, 12, 13, 22, 24, 26, 37, 44, 46, 47, 48, ... (see the link for more values).

Crossrefs

Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386, A348632, A358253.

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^DigitCount[If[OddQ[e], e - 1, e], 2, 1]; f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; s = {}; fmax = -1; Do[If[(fn = f[n]) > fmax, fmax = fn; AppendTo[s, n]], {n, 1, 6*10^5}]; s
  • PARI
    s(n) = {my(f = factor(n));  prod(i=1, #f~, 1+f[i,2]\2) - prod(i=1, #f~, 2^hammingweight(if(f[i,2]%2, f[i,2]-1, f[i,2])))};
    lista(nmax) = {my(smax = -1, sn); for(n = 1, nmax, sn = s(n); if(sn > smax, smax = sn; print1(n, ", "))); }

A359412 Numbers with a record number of divisors that are both infinitary and exponential.

Original entry on oeis.org

1, 8, 216, 27000, 9261000, 12326391000, 27081081027000, 110924107886592000, 544970142046826496000, 3737950204299182936064000, 45479640135708158783090688000, 1109202943269786284560798789632000, 33044264882950203203350756741926912000, 1673791149116076642859325881248823873536000
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2022

Keywords

Comments

Indices of records in A359411.
a(2)-a(7) are the first 6 terms of A115964.
The first 15 terms are cubes. Are there noncubes in this sequence?
The corresponding record values are 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, ... . Apparently, this sequence of records is the powers of 2 (A000079).

Crossrefs

Subsequence of A025487.
Similar sequences: A037992, A318278.

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; f[p_, e_] := s[e]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n];
    v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]];
    seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq

A361319 Indices of records in the sequence of infinitary harmonic means A361316(k)/A361317(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 54, 56, 60, 84, 105, 120, 168, 210, 264, 270, 280, 360, 420, 540, 660, 756, 840, 1080, 1320, 1512, 1848, 1890, 2310, 2520, 3080, 3640, 3780, 4620, 5460, 5940, 7020, 7560, 9240, 10920, 11880, 14040, 16632, 19656
Offset: 1

Views

Author

Amiram Eldar, Mar 09 2023

Keywords

Examples

			The infinitary harmonic means of the first 6 positive integers are 1 < 4/3 < 3/2 < 8/5 < 5/3 < 2. The next record, A361316(8)/A361317(8) = 32/15, occurs at 8. Therefore, the first 7 terms of this sequence are 1, 2, 3, 4, 5, 6 and 8.
		

Crossrefs

Similar sequences: A179971, A348654.
Other sequences related to records of infinitary divisors: A037992, A327634.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; ihmean[1] = 1; ihmean[n_] := n*Times @@ f @@@ FactorInteger[n]; seq[kmax_] := Module[{ih, ihmax = 0, s = {}}, Do[ih = ihmean[k]; If[ih > ihmax, ihmax = ih; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[20000]
  • PARI
    ihmean(n) = {my(f = factor(n), b); n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1))); };
    lista(kmax) = {my(ih, ihmax=0); for(k = 1, kmax, ih = ihmean(k); if(ih > ihmax, ihmax = ih; print1(k, ", ")));}

A376471 Lexicographically earliest strictly increasing sequence of numbers whose partial products are all exponentially 2^n-numbers (A138302).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 11, 13, 17, 19, 20, 23, 25, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 208, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Amiram Eldar, Sep 24 2024

Keywords

Comments

All the primes are terms.

Examples

			1 * 2 = 2^1 and 1 = 2^0.
1 * 2 * 3 = 6 = 2^1 * 3^1 and 1 = 2^0.
1 * 2 * 3 * 5 * 6 = 180 = 2^2 * 3^2 * 5^1, 1 = 2^0 and 2 = 2^1.
		

Crossrefs

Disjoint union of A000040 and A376472.
Similar sequences:
Sequence | Partial products are in | Exponents are in
--------------+-------------------------+------------------------
A050376 | A037992 | A000225 \ {0} (2^n-1)
A089237 | A268335 | A005408 (odd numbers)
{1} U A246551 | A246551 | A000290 \ {0} (squares)
this sequence | A138302 | A000079 (powers of 2)

Programs

  • Mathematica
    expPow2Q[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &]; a[1] = 1; a[n_] := a[n] = Module[{prod = Times @@ Array[a, n - 1], k = a[n - 1] + 1}, While[! expPow2Q[prod*k], k++]; k]; Array[a, 100]
  • PARI
    ispow2(n) = if(n == 0, 1, n >> valuation(n, 2) == 1);
    lista(pindmax) = {my(pmax = prime(pindmax), v = vector(pindmax), f, pind, prd); print1(1, ", "); for(k = 2, pmax, f = factor(k); pind = apply(x -> primepi(x), f[,1]); for(i = 1, #pind, v[pind[i]] += f[i, 2]); if(vecprod(apply(x -> ispow2(x), v)) > 0, print1(k, ", "), for(i = 1, #pind, v[pind[i]] -= f[i, 2])));}

A382293 a(n) is the least number k such that A382290(k) = n.

Original entry on oeis.org

1, 8, 128, 3456, 279936, 34992000, 8957952000, 3072577536000, 1920360960000000, 2556000437760000000, 5615532961758720000000, 13482894641182686720000000, 66241461372130539855360000000, 434610228062548471991016960000000, 2980991554281019969386385328640000000
Offset: 0

Views

Author

Amiram Eldar, Mar 21 2025

Keywords

Comments

Also, a(n) is the least number k such that A382291(k) = 2^n.
Cumulative products of the sorted sequence that contains 1 and prime powers of the form p^3 and p^(2^k) with k >= 2.

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    seq[max_] := Module[{t = {}, k = 3, lim}, While[lim = max^(1/k); lim > 2, t = Join[t, Prime[Range[PrimePi[lim]]]^k]; If[k == 3, k = 4, k *= 2]]; t = Sort[t]; FoldList[Times, 1, t]]; seq[10^4] (* after T. D. Noe at A050376 *)
  • PARI
    list(mx) = {my(t = [1], k =3, lim); while(lim = mx^(1/k); lim > 2, t = concat(t, apply(x -> x^k, primes(primepi(lim)))); if(k == 3, k = 4, k *= 2)); t = vecsort(t); vector(#t, n, prod(i = 1, n, t[i]));}

A036539 a(n) is the number of numbers k with 2^(n-1) < k <= 2^n having a number of divisors that is a power of 2.

Original entry on oeis.org

1, 1, 4, 5, 11, 22, 44, 89, 178, 351, 702, 1413, 2817, 5634, 11273, 22542, 45077, 90150, 180322, 360621, 721233, 1442482, 2884968, 5769917, 11539863, 23079674, 46159310, 92318616, 184637146, 369274400, 738548882, 1477097703, 2954195153, 5908390134, 11816780283
Offset: 1

Views

Author

Keywords

Examples

			a(5) = 11: The following 11 numbers have numbers of divisors that are powers of 2: 17, 19, 21, 22, 23, 24, 26, 27, 29, 30 and 31 with 2, 2, 4, 4, 2, 8, 4, 4, 2, 8 and 2 divisors, respectively.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Boole[n == 2^IntegerExponent[n, 2]]; a[n_] := Sum[f[DivisorSigma[0, k]], {k, 2^(n - 1) + 1, 2^n}]; Array[a, 20] (* Amiram Eldar, Aug 16 2024 *)
  • PARI
    a(n)=sum(k=2^(n-1)+1,2^n, my(d=numdiv(k)); (d/(1<Joerg Arndt, Feb 27 2017

Formula

a(n) ~ c * 2^(n-1), where c = 0.687827... (A327839). - Amiram Eldar, Aug 16 2024

Extensions

Name clarified and more terms from Joerg Arndt, Feb 27 2017
a(25)-a(28) from Jon E. Schoenfield, Jul 31 2018
a(29)-a(35) from Jon E. Schoenfield, Aug 04 2018

A061236 Smallest number with prime(n)^3 divisors where prime(n) is n-th prime.

Original entry on oeis.org

24, 900, 810000, 729000000, 590490000000000, 531441000000000000, 430467210000000000000000, 387420489000000000000000000, 313810596090000000000000000000000, 228767924549610000000000000000000000000000, 205891132094649000000000000000000000000000000
Offset: 1

Views

Author

Labos Elemer, Jun 01 2001

Keywords

Examples

			If p = 2, then d(128) = d(24) = d(30) = 8 and a(1) = 24 < 30 is the smallest.
If p = 5, then 2^124 > (2^24)*(3^4) > 30^4 = 810000 = a(3).
		

Crossrefs

Formula

For p = 2, 24 is the solution. If a prime p > 2, the suitable powers of 30 are the least solutions: a(n) = Min{x | d(x) = A000005(x) = p(n)^3} = 30^(prime(n)-1). d(2^(ppp-1)) = d(2^(pp-1)*3^(p-1)) = d(30^(p-1)) = p^3 and 2^(ppp-1) > 2^(pp-1)*3^(p-1) > 30^(p-1) holds if p > 2.
a(n) = A005179(A030078(n)) = A005179(prime(n)^3). - Amiram Eldar, Jan 23 2025

Extensions

a(10)-a(11) from Amiram Eldar, Jan 23 2025

A065743 Smallest number with exactly A025475(n) divisors.

Original entry on oeis.org

1, 6, 24, 36, 120, 1296, 900, 840, 46656, 7560, 44100, 60466176, 810000, 83160, 2176782336, 2822400, 1081080, 2821109907456, 729000000, 101559956668416, 17297280, 131621703842267136, 1944810000, 341510400
Offset: 1

Views

Author

Labos Elemer, Nov 15 2001

Keywords

Comments

Note that 2^(n-1) has n divisors. - David Wasserman, Sep 09 2002

Crossrefs

Programs

  • Mathematica
    a = Table[ 0, {1024} ]; Do[ b = DivisorSigma[ 0, n]; If[ b < 1025 && a[[b]] == 0, a[[b]] = n], {n, 1, 10^8/2} ]; a[[ Select[ Range[2, 1024], !PrimeQ[ # ] && Mod[ #, # - EulerPhi[ # ]] == 0 & ] ]]

Formula

a(n) = A005179(A025475(n)).

Extensions

More terms from David Wasserman, Sep 09 2002

A349111 Powerful superabundant numbers: numbers m such that psigma(m)/m > psigma(k)/k for all k < m, where psigma(k) is the sum of powerful divisors of k (A183097).

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 144, 216, 432, 864, 1296, 1728, 2592, 5184, 10368, 15552, 31104, 54000, 108000, 162000, 216000, 324000, 648000, 1296000, 1944000, 3240000, 3888000, 6480000, 9720000, 19440000, 38880000, 58320000, 74088000, 111132000, 222264000, 444528000, 666792000
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

The corresponding record values are 1, 5/4, 13/8, 29/16, 61/32, 125/64, ...
The least term k with psigma(k)/k > m, for m = 2, 3, ..., is 144, 54000, 666792000, ...

Crossrefs

Subsequence of A349112.
Similar sequences: A002110 (unitary), A037992 (infinitary), A061742, A292984, A329882, A348273.

Programs

  • Mathematica
    f[p_,e_] := (p^(e+1)-1)/(p-1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; rm = 0; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]], {n, 1, 10^6}]; seq

A363330 Numbers with a record number of divisors that are both coreful and infinitary.

Original entry on oeis.org

1, 8, 128, 216, 3456, 27000, 279936, 432000, 9261000, 34992000, 148176000, 8957952000, 12002256000, 197222256000, 3072577536000, 7501410000000, 15975002736000, 433297296432000, 1920360960000000, 4089600700416000, 9984376710000000, 35097081010992000, 2128789617370416000
Offset: 1

Views

Author

Amiram Eldar, May 28 2023

Keywords

Comments

Indices of records in A363329.
The corresponding record values are 1, 3, 7, 9, 21, 27, 49, 63, 81, 147, 189, 315, ... (see the link for more values).

Crossrefs

Cf. A363329.
Subsequence of A025487.
Similar sequences: A005934, A037992.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1] - 1; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n];
    v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]];
    seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq
Previous Showing 31-40 of 44 results. Next