cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A141772 Primes of the form 3*x^2 + 5*x*y - 5*y^2 (as well as of the form 7*x^2 + 13*x*y + 3*y^2).

Original entry on oeis.org

3, 5, 7, 17, 23, 37, 73, 97, 107, 113, 163, 167, 173, 193, 197, 227, 233, 277, 283, 313, 317, 337, 347, 367, 397, 487, 503, 547, 607, 617, 643, 653, 673, 677, 683, 743, 787, 823, 827, 853, 857, 877, 887, 907, 947, 983, 997, 1013, 1093, 1117, 1153, 1163, 1187
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008

Keywords

Comments

Discriminant = 85. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

Examples

			a(1) = 3 because we can write 3 = 3*1^2 + 5*1*0 - 5*0^2 (or 3 = 7*0^2 + 13*0*1 + 3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A141773 (d=85). See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141750 (d=73). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

Extensions

More terms from Colin Barker, Apr 04 2015
Typo in crossrefs fixed by Colin Barker, Apr 05 2015

A270997 Numbers k such that k | A006190(k-1).

Original entry on oeis.org

1, 3, 10, 17, 23, 29, 33, 43, 53, 61, 79, 101, 103, 107, 113, 127, 131, 139, 157, 173, 179, 181, 191, 199, 211, 233, 251, 257, 263, 269, 277, 283, 311, 313, 337, 347, 367, 373, 385, 389, 419, 433, 439, 443, 467, 491, 503, 521, 523, 547, 561, 563, 569, 571, 599, 601, 607, 641, 647, 649, 653, 659
Offset: 1

Views

Author

Altug Alkan, Mar 28 2016

Keywords

Comments

This sequence appears to generate many prime numbers.
The first few composite terms in this sequence are 10, 33, 385, 561, 649, ...
Contains all members of A038883 except 13. - Robert Israel, Jun 03 2019
That is, contains all primes which are congruent to +-1, +-3 or +-4 (mod 13). - M. F. Hasler, Feb 16 2022

Examples

			10 is a term because A006190(9) = 12970 is divisible by 10.
		

Crossrefs

Programs

  • Maple
    M:= <<3,1>|<1,0>>:
    filter:= proc(n) uses LinearAlgebra[Modular];
      local A;
      A:= Mod(n,M,integer);
      MatrixPower(n,A,n-1)[1,2]=0
    end proc:
    filter(1):= true:
    select(filter, [$1..659]); # Robert Israel, Jun 03 2019
  • Mathematica
    nn = 660; s = LinearRecurrence[{3, 1}, {0, 1}, nn]; Select[Range@ nn, Divisible[s[[#]], #] &](* Michael De Vlieger, Mar 28 2016, after Harvey P. Dale at A006190 *)
  • PARI
    a006190(n) = ([1, 3; 1, 2]^n)[2, 1];
    for(n=1, 1e3, if(Mod(a006190(n-1), n) == 0, print1(n, ", ")));

A120330 Primes not congruent to +- 1, 3, or 4 (mod 13).

Original entry on oeis.org

2, 5, 7, 11, 13, 19, 31, 37, 41, 47, 59, 67, 71, 73, 83, 89, 97, 109, 137, 149, 151, 163, 167, 193, 197, 223, 227, 229, 239, 241, 271, 281, 293, 307, 317, 331, 349, 353, 359, 379, 383, 397, 401, 409, 421, 431, 449, 457, 461, 463, 479, 487, 499, 509, 541, 557
Offset: 1

Views

Author

Neil Fernandez, Jun 22 2006

Keywords

Comments

This sequence consists of all the primes that are not in A270997. - Bill McEachen, Feb 16 2022

Examples

			37 is prime and congruent to -2 (mod 13), so 37 is a term.
		

Crossrefs

Cf. A038883 (primes congruent to 0, +-1, +-3, +-4 (mod 13)).
Cf. A270997.

Programs

  • Mathematica
    For[a = 1, a < 1001, a++, p = Prime[a]; t = Mod[p, 13]; If[Or[t == 1, t == 3, t == 4, t == 9, t == 10, t == 12] == False, Print[p]]]
    Select[Prime[Range[110]],!MemberQ[{1,3,4,9,10,12},Mod[#,13]]&] (* Harvey P. Dale, May 12 2019 *)
  • PARI
    select( {is_A120330(n)=!bittest(5658,n%13)&&isprime(n)}, [0..567]) \\ M. F. Hasler, Feb 17 2022

Formula

A000040 \ A038883 U {13}: Complement of A038883 in the primes, and 13. - M. F. Hasler, Feb 17 2022

Extensions

Corrected by N. J. A. Sloane, May 12 2019 at the suggestion of Harvey P. Dale

A141778 Primes of the form 4*x^2 + 3*x*y - 5*y^2 (as well as of the form 8*x^2 + 11*x*y + y^2).

Original entry on oeis.org

2, 5, 11, 17, 47, 53, 67, 71, 73, 79, 89, 97, 107, 109, 131, 139, 157, 167, 173, 179, 199, 223, 227, 233, 251, 257, 263, 269, 271, 277, 283, 307, 311, 317, 331, 347, 367, 373, 401, 409, 443, 449, 461, 463, 467, 479, 487, 509, 523, 587, 601, 607, 613, 619, 631
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008

Keywords

Comments

Discriminant = 89. Class = 1. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
A subsequence of (and may possibly coincide with) A038977. - R. J. Mathar, Jul 22 2008

Examples

			a(1) = 2 because we can write 2 = 4*1^2 + 3*1*1 - 5*1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141750 (d=73). A141772, A141773 (d=85). A141776, A141777 (d=88). A141778 (d=89). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

Extensions

Typo in crossrefs fixed by Colin Barker, Apr 05 2015

A142955 Primes of the form 3*x^2 + 4*x*y - 5*y^2 (as well as of the form 3*x^2 + 10*x*y + 2*y^2).

Original entry on oeis.org

2, 3, 19, 31, 59, 67, 71, 79, 103, 107, 127, 151, 167, 179, 211, 223, 227, 307, 331, 379, 383, 431, 439, 487, 523, 547, 563, 599, 607, 659, 683, 743, 751, 787, 811, 827, 839, 863, 887, 907, 911, 971, 983, 991, 1019, 1039, 1063, 1091, 1123, 1171, 1231, 1283
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (laucabfer(AT)alum.us.es), Jul 14 2008

Keywords

Comments

Discriminant = 76. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

Examples

			a(4) = 31 because we can write 31 = 3*3^2 + 4*3*2 - 5*2^2 (or 31 = 3*1^2 + 10*1*2 + 2*2^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A142956 (d=76). A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by M. F. Hasler, Feb 18 2022

A142956 Primes of the form -3*x^2 + 4*x*y + 5*y^2 (as well as of the form 6*x^2 + 10*x*y + y^2).

Original entry on oeis.org

5, 17, 61, 73, 101, 137, 149, 157, 197, 229, 233, 277, 313, 349, 353, 389, 397, 457, 461, 541, 557, 577, 593, 613, 617, 653, 701, 709, 733, 757, 761, 769, 809, 821, 853, 881, 929, 937, 997, 1013, 1033, 1049, 1061, 1069, 1109, 1201, 1213, 1217, 1277, 1289
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (laucabfer(AT)alum.us.es), Jul 14 2008

Keywords

Comments

Discriminant = 76. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

Examples

			a(2) = 17 because we can write 17 = -3*3^2 + 4*3*2 + 5*2^2 (or 17 = 6*1^2 + 10*1*1 + 1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.

Crossrefs

Cf. A142955 (d=76). A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).

Programs

  • Mathematica
    Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -3*x^2 + 4*x*y + 5*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by M. F. Hasler, Feb 18 2022

A142957 Duplicate of A038987.

Original entry on oeis.org

2, 3, 11, 31, 43, 47, 53, 61, 73, 79, 89, 97, 101, 103, 109, 113, 151, 163, 167, 191, 193, 197, 227, 229, 241, 269, 283, 293, 307, 313, 353, 379, 389, 397, 419, 421, 431, 449, 461, 463, 467, 479, 487, 491, 503, 509, 521, 547, 557, 571, 593, 607, 613, 617, 631
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (laucabfer(AT)alum.us.es), Jul 17 2008

Keywords

Comments

Previous name was: Primes of the form 3*x^2 + 5*x*y - 6*y^2 (as well as of the form 6*x^2 + 11*x*y + y^2).
Discriminant = 97. Class = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2-4ac.
Is this the same as A038987? - R. J. Mathar, Oct 12 2013
From Don Reble, Oct 06 2014: (Start)
G. B. Mathews ("Theory of Numbers" by Chelsea publishing) might have an answer to the relation with A038987. In point 59 on page 65 he claims that
- if X is a non-residue of a discriminant of a quadratic form, then X is not representable; and
- if X is a residue of D, then there is a quadratic form of determinant D which represents X.
If all forms of discriminant 97 are equivalent, then that might suffice. (Indeed, either +97 or -97 has class number 1; but I am not sure which sign matters, A003656 vs. A003173.)
(End)
From Jianing Song, Feb 24 2021: (Start)
Also primes of the form u^2 + u*v - 24*v^2. Substitute u, v by u = 9*x+22*y, v = 2*x+5*y gives 3*x^2 + 5*x*y - 6*y^2.
Yes, this is the same as A038987. For primes p being a (coprime) square modulo 97, they split in the ring Z[(1+sqrt(97))/2]. Since Z[(1+sqrt(97))/2] is a UFD, they are reducible in Z[(1+sqrt(97))/2], so we have p = e*(u + v*(1+sqrt(97))/2)*(u + v*(1-sqrt(97))/2) = e*(u^2 + u*v - 24*v^2), e = +-1. WLOG we can suppose e = 1, otherwise substitute u, v by 5035*u+27312*v and 1138*u+6173*v, then p = u^2 + u*v - 24*v^2. On the other hand, if p is a quadratic nonresidue modulo 97, then they remain inert in Z[(1+sqrt(97))/2] and hence cannot be represented as u^2 + u*v - 24*v^2. (End)

Examples

			a(6) = 47 because we can write 47 = 3*11^2 + 5*11*(-4) - 6*(-4)^2 (or 47 = 6*2^2 + 11*2*1 + 1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Previous Showing 41-47 of 47 results.