cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A064368 Number of 2 X 2 symmetric singular matrices with entries from {0,...,n}.

Original entry on oeis.org

1, 4, 7, 10, 15, 18, 21, 24, 29, 36, 39, 42, 47, 50, 53, 56, 65, 68, 75, 78, 83, 86, 89, 92, 97, 108, 111, 118, 123, 126, 129, 132, 141, 144, 147, 150, 163, 166, 169, 172, 177, 180, 183, 186, 191, 198, 201, 204, 213, 228, 239, 242, 247, 250, 257, 260, 265, 268
Offset: 0

Views

Author

Vladeta Jovovic, Sep 27 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; a[0] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; With[{max = 100}, 1 + Range[0, max] + 2 * Accumulate[Array[a, max + 1, 0]]] (* Amiram Eldar, Nov 07 2024 *)
  • PARI
    a(n) = n + 1 + 2*sum(k=1, n, sumdiv(k, d, issquare(d)*eulerphi(sqrtint(d)))) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = n + 1 + 2*Sum_{k=1..n} Sum_{d^2|k} phi(d), where phi = Euler totient function A000010.
a(n) ~ (n/zeta(2)) * (log(n) + 3*gamma - 1 + zeta(2) - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 07 2024

A064363 Number of 2 X 2 regular integer matrices with elements from {0,...,n} up to row and column permutation.

Original entry on oeis.org

0, 2, 14, 51, 133, 289, 547, 954, 1546, 2380, 3508, 5005, 6915, 9347, 12353, 16028, 20468, 25790, 32054, 39427, 47965, 57833, 69155, 82082, 96682, 113192, 131720, 152429, 175467, 201075, 229305, 260492, 294700, 332182, 373138, 417751, 466201
Offset: 0

Views

Author

Vladeta Jovovic, Sep 25 2001

Keywords

Examples

			There are 2 binary regular matrices up to row and column permutation:
[1 0] [1 1]
[0 1] [1 0].
		

Crossrefs

Programs

  • Mathematica
    A059306[0] = 1; A059306[n_] := Table[{w, x, y, z} /. {ToRules[ Reduce[0 <= x <= n && 0 <= y <= n && 0 <= z <= n && w*z - x*y == 0, {x, y, z}, Integers]]}, {w, 0, n}] // Flatten[#, 1] & // Length; a[n_] := ((n + 1)*(n^3 + 3*n^2 + 4*n + 1) - A059306[n])/4; Table[Print[an = a[n]]; an, {n, 0, 36}] (* Jean-François Alcover, Nov 26 2013 *)

Formula

a(n) = ((n+1)*(n^3+3*n^2+4*n+1)-A059306(n))/4.

A367505 Triangle read by rows: row n gives the h-vector of the n-th halohedron.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 27, 13, 1, 1, 21, 76, 76, 21, 1, 1, 31, 175, 300, 175, 31, 1, 1, 43, 351, 925, 925, 351, 43, 1, 1, 57, 637, 2401, 3675, 2401, 637, 57, 1, 1, 73, 1072, 5488, 11956, 11956, 5488, 1072, 73, 1, 1, 91, 1701, 11376, 33516, 47628, 33516, 11376, 1701, 91, 1
Offset: 0

Views

Author

F. Chapoton, Nov 21 2023

Keywords

Comments

Theorem 6.1.11 in Almeter's thesis gives the f-vector generating series. Then replacing x with x-1 gives the h-vector generating series.

Examples

			As a table:
  (1),
  (1,  1),
  (1,  3,  1),
  (1,  7,  7,  1),
  (1, 13, 27, 13,  1),
  (1, 21, 76, 76, 21,  1),
  ...
		

Crossrefs

Row sums are A051960(n-1) for n>=1.
Alternating sums form an aerated version of A110556.
Columns k=0-2 give A000012, A002061, A039623(n-1) for n>=2.

Programs

  • Mathematica
    T[0,0]:=1;T[n_,k_]:= Binomial[n-1,n-k]*Binomial[n,n-k]+Binomial[n-1,n-k-1]^2;Flatten[Table[T[n,k],{n,0,10},{k,0,n}]] (* Detlef Meya, Nov 23 2023 *)
  • Sage
    x = polygen(QQ, 'x')
    t = x.parent()[['t']].0
    F = (1 + (1+x) * t) / (2 * sqrt(1 - 2 * (x+1) * t + (x-1)**2 * t**2)) + 1/2
    for poly in F.list(): print(poly.list())

Formula

G.f.: (1 + (1+x)*t)/(2*sqrt(1 - 2*(x+1)*t + (x-1)^2*t^2)) + 1/2.
T(0,0) = 1; T(n,k) = binomial(n-1,n-k)*binomial(n,n-k)+binomial(n-1,n-k-1)^2. - Detlef Meya, Nov 23 2023
Previous Showing 11-13 of 13 results.