cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A039711 a(n) = n-th prime modulo 13.

Original entry on oeis.org

2, 3, 5, 7, 11, 0, 4, 6, 10, 3, 5, 11, 2, 4, 8, 1, 7, 9, 2, 6, 8, 1, 5, 11, 6, 10, 12, 3, 5, 9, 10, 1, 7, 9, 6, 8, 1, 7, 11, 4, 10, 12, 9, 11, 2, 4, 3, 2, 6, 8, 12, 5, 7, 4, 10, 3, 9, 11, 4, 8, 10, 7, 8, 12, 1, 5, 6, 12, 9, 11, 2, 8, 3, 9, 2, 6, 12, 7, 11, 6
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (13/2)*n. - Amiram Eldar, Dec 11 2024

A039712 a(n) = n-th prime modulo 14.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 3, 5, 9, 1, 3, 9, 13, 1, 5, 11, 3, 5, 11, 1, 3, 9, 13, 5, 13, 3, 5, 9, 11, 1, 1, 5, 11, 13, 9, 11, 3, 9, 13, 5, 11, 13, 9, 11, 1, 3, 1, 13, 3, 5, 9, 1, 3, 13, 5, 11, 3, 5, 11, 1, 3, 13, 13, 3, 5, 9, 9, 1, 11, 13, 3, 9, 3, 9, 1, 5, 11, 5, 9
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ 7*n. - Amiram Eldar, Dec 12 2024

A137977 Primes congruent to {0, 2, 4, 6, 8, 10} modulo 11.

Original entry on oeis.org

2, 11, 13, 17, 19, 37, 41, 43, 59, 61, 79, 83, 101, 103, 107, 109, 127, 131, 149, 151, 167, 173, 191, 193, 197, 211, 233, 239, 241, 257, 263, 277, 281, 283, 307, 347, 349, 367, 373, 389, 409, 431, 433, 439, 457, 461, 479, 499, 503, 521, 523, 541, 547, 563, 569
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 25 2008

Keywords

Comments

A039709(A049084(a(n))) = even; complement of A137978.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(600) | p mod 11 in [0..10 by 2]]; // Vincenzo Librandi, Aug 15 2012
  • Mathematica
    Select[Prime[Range[200]], MemberQ[{0, 2, 4, 6, 8, 10}, Mod[#, 11]] &] (* Vincenzo Librandi, Aug 15 2012 *)
    Select[Prime[Range[110]], EvenQ[Mod[#, 11]] &] (* Bruno Berselli, Aug 31 2012 *)

A137978 Primes congruent to {1, 3, 5, 7, 9} modulo 11.

Original entry on oeis.org

3, 5, 7, 23, 29, 31, 47, 53, 67, 71, 73, 89, 97, 113, 137, 139, 157, 163, 179, 181, 199, 223, 227, 229, 251, 269, 271, 293, 311, 313, 317, 331, 337, 353, 359, 379, 383, 397, 401, 419, 421, 443, 449, 463, 467, 487, 491, 509, 557, 577, 599, 601, 617, 619, 641
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 25 2008

Keywords

Comments

A039709(A049084(a(n))) = odd; complement of A137977.

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(740) | p mod 11 in {1, 3, 5, 7, 9} ] // Vincenzo Librandi, Jan 25 2011
  • Mathematica
    Select[Flatten[# + {1, 3, 5, 7, 9}&/@(11Range[0, 80])], PrimeQ] (* Harvey P. Dale, Jan 15 2011 *)

A039713 a(n) = n-th prime modulo 15.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 2, 4, 8, 14, 1, 7, 11, 13, 2, 8, 14, 1, 7, 11, 13, 4, 8, 14, 7, 11, 13, 2, 4, 8, 7, 11, 2, 4, 14, 1, 7, 13, 2, 8, 14, 1, 11, 13, 2, 4, 1, 13, 2, 4, 8, 14, 1, 11, 2, 8, 14, 1, 7, 11, 13, 8, 7, 11, 13, 2, 1, 7, 2, 4, 8, 14, 7, 13, 4, 8, 14, 7
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (15/2)*n. - Amiram Eldar, Dec 12 2024

A039714 a(n) = n-th prime modulo 16.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 1, 3, 7, 13, 15, 5, 9, 11, 15, 5, 11, 13, 3, 7, 9, 15, 3, 9, 1, 5, 7, 11, 13, 1, 15, 3, 9, 11, 5, 7, 13, 3, 7, 13, 3, 5, 15, 1, 5, 7, 3, 15, 3, 5, 9, 15, 1, 11, 1, 7, 13, 15, 5, 9, 11, 5, 3, 7, 9, 13, 11, 1, 11, 13, 1, 7, 15, 5, 11, 15, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ 8*n. - Amiram Eldar, Dec 12 2024

A103569 Sum of the (primes > 5 modulo 11).

Original entry on oeis.org

7, 7, 9, 15, 23, 24, 31, 40, 44, 52, 62, 65, 74, 78, 84, 85, 90, 97, 99, 105, 106, 115, 117, 121, 129, 139, 142, 148, 158, 163, 170, 176, 184, 187, 196, 198, 206, 209, 214, 218, 224, 234, 235, 237, 240, 247, 256, 258, 266, 276, 285, 289, 299, 304, 311, 313, 319
Offset: 1

Views

Author

Roger L. Bagula, Mar 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a = Table[Sum[Mod[Prime[i + 3], 11], {i, 1, n}], {n, 1, 200}]
    Accumulate[Mod[Prime[Range[4,60]],11]] (* Harvey P. Dale, Aug 24 2017 *)

Formula

a(n+1)-a(n) = A039709(n+4).
Previous Showing 11-17 of 17 results.