cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A361670 Squarefree part of the n-th triangular number.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 7, 1, 5, 55, 66, 78, 91, 105, 30, 34, 17, 19, 190, 210, 231, 253, 69, 3, 13, 39, 42, 406, 435, 465, 31, 33, 561, 595, 70, 74, 703, 741, 195, 205, 861, 903, 946, 110, 115, 1081, 282, 6, 1, 51, 1326, 1378, 159, 165, 385, 399, 1653, 1711, 1770, 1830, 1891, 217, 14, 130, 2145, 2211, 2278
Offset: 1

Views

Author

R. J. Mathar, Mar 20 2023

Keywords

Comments

a(n) / A083481(n) is either 2 or 1/2 depending on A136480(n) being even or odd, which is indicated by A039963(n).
a(n) = 1 for n>0 in A001108. - Michel Marcus, Mar 22 2023

Crossrefs

Cf. A000217, A007913, A083481 (of oblong), A361671 (of tetrahedral).

Programs

  • Maple
    a:= n-> mul(i[1]^irem(i[2], 2), i=ifactors(n*(n+1)/2)[2]):
    seq(a(n), n=1..70);  # Alois P. Heinz, Mar 20 2023
  • PARI
    a(n) = core(n*(n+1)/2); \\ Michel Marcus, Mar 22 2023
  • Python
    from sympy.ntheory.factor_ import core
    def A361670(n): return core(n*(n+1)>>1) # Chai Wah Wu, Mar 20 2023
    

Formula

a(n) = A007913(A000217(n)).

A092444 a(n+1) = 11*a(n) - a(n-1) - 3, a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 7, 73, 793, 8647, 94321, 1028881, 11223367, 122428153, 1335486313, 14567921287, 158911647841, 1733460204961, 18909150606727, 206267196469033, 2250030010552633, 24544062919609927, 267734662105156561
Offset: 0

Views

Author

N. J. A. Sloane, Sep 19 2008, based on emails from M. F. Hasler and Jim Nastos on Apr 25 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A039963.
The simultaneous equations (p+1)(p+2) == -1 (mod q), (q+1)(q+2) == -1 (mod p), where p and q are odd, have solutions {3, 3}, {3, 21}, {7, 73}, {21, 507}, {73, 793}, {793, 8647} and suggested this recurrence.

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,11b-a-3}; NestList[nxt,{1,1},20][[;;,1]] (* or *) LinearRecurrence[{12,-12,1},{1,1,7},20] (* Harvey P. Dale, Jul 06 2025 *)

Formula

a(n) = 2*(A004190(n)-10*A004190(n-1))/3+1/3. G.f.: (1-11x+7x^2)/((1-x)(1-11x+x^2)). [From R. J. Mathar, Sep 20 2008]

Extensions

More terms from R. J. Mathar, Sep 20 2008

A128810 Triangle formed by reading triangle A064189 mod 2 .

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 09 2007

Keywords

Comments

Also triangle formed by reading triangles A091965, A108149, A110877, A125906, A126954 mod 2 .

Examples

			Triangle begins:
1;
1, 1;
0, 0, 1;
0, 1, 1, 1;
1, 0, 1, 0, 1;
1, 0, 1, 0, 1, 1;
1, 0, 1, 0, 0, 0, 1;
1, 0, 1, 1, 0, 1, 1, 1;
1, 0, 0, 0, 0, 0, 1, 0, 1;
1, 1, 0, 0, 0, 1, 1, 0, 1, 1;
0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 ;...
		

Formula

Sum_{k, 0<=k<=n}T(n,k)*x^k=A039963(n), A097357(n+1), A110565(n+1) for x=0,1,2 respectively . T(n,k)= (T(n-1,k-1)+T(n-1,k)+T(n-1,k+1)) mod 2, T(0,0)=1, T(n,k)=0 if k<0 or if k>n .

A354292 Primes p such that for all m, M(m) is not divisible by p^2 where M(n) is the n-th Motzkin number A001006.

Original entry on oeis.org

5, 13, 31, 37, 61, 79, 97, 103
Offset: 1

Views

Author

Michel Marcus, May 23 2022

Keywords

Crossrefs

Motzkin numbers A001006 read mod 2,3,4,5,6,7,8,11: A039963, A039964, A299919, A258712, A299920, A258711, A299918, A258710.

A375863 a(1) = 0 and a(n) = A050603(n-1)^2 for n > 0. Lexicographically earliest nonnegative sequence of integers such that the Gilbreath transform of a(1..n) gives floor(log_2(n)).

Original entry on oeis.org

0, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 16, 16, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 25, 25, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 16, 16, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 36, 36, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 16, 16, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 25
Offset: 1

Views

Author

Thomas Scheuerle, Sep 02 2024

Keywords

Examples

			The first row is the sequence itself. The rows below are the absolute differences
of each previous row:
0, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 16, 16, ...
 1, 0, 3, 0, 3, 0, 8, 0, 8, 0, 3, 0, 3, 0, 15, 0, ...
  1, 3, 3, 3, 3, 8, 8, 8, 8, 3, 3, 3, 3, 15, 15, ...
   2, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 12, 0, ...
    2, 0, 0, 5, 5, 0, 0, 5, 5, 0, 0, 12, 12, ...
     2, 0, 5, 0, 5, 0, 5, 0, 5, 0, 12, 0, ...
      2, 5, 5, 5, 5, 5, 5, 5, 5, 12, 12, ...
       3, 0, 0, 0, 0, 0, 0, 0, 7, 0, ...
        3, 0, 0, 0, 0, 0, 0, 7, 7, ...
         3, 0, 0, 0, 0, 0, 7, 0, ...
          3, 0, 0, 0, 0, 7, 7, ...
           3, 0, 0, 0, 7, 0, ...
            3, 0, 0, 7, 7, ...
             3, 0, 7, 0, ...
              3, 7, 7, ...
               4, 0, ...
                4, ...
The main diagonal is floor(log_2(n)), where n = 1 in the first row and n = 2 in the second etc. .
		

Crossrefs

Cf. A050603, A039963 (Gilbreath transform of floor(log_2(n))).

Programs

  • PARI
    a(n) = if(n == 1, 0,valuation(n-(n-2)%2, 2)^2)
Previous Showing 11-15 of 15 results.