cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A173494 Numbers m such that no square greater than 1 can be written as sum of distinct divisors of m.

Original entry on oeis.org

1, 2, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 38, 41, 43, 47, 53, 58, 59, 61, 65, 67, 71, 73, 74, 77, 79, 82, 83, 85, 86, 89, 91, 97, 101, 103, 106, 107, 109, 113, 127, 131, 133, 134, 137, 139, 145, 146, 149, 151, 157, 163, 167, 173, 178, 179, 181, 185, 187, 191, 193, 197
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2010

Keywords

Comments

2546 is the smallest term having more than two prime factors: 2546 = 2*19*67.

Crossrefs

Cf. A173493.
A045344 is a subsequence (the primes except 3).

Programs

  • Mathematica
    q[m_] := Module[{d = Divisors[m], sum, sq, x}, sum = Plus @@ d; sq = Range[2, Floor[Sqrt[sum]]]^2; Total[CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sq]]] == 0]; Select[Range[200], q] (* Amiram Eldar, Apr 16 2025 *)

Formula

A173493(a(n)) = 1.

A235480 Primes whose base-3 representation is also the base-9 representation of a prime.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 23, 31, 37, 41, 43, 53, 67, 71, 73, 83, 89, 97, 103, 149, 157, 199, 239, 251, 257, 271, 277, 293, 307, 313, 331, 337, 359, 383, 397, 421, 431, 433, 499, 541, 557, 571, 587, 599, 601, 613, 631, 653, 659, 661, 683, 691, 709, 727, 751, 769, 823, 887, 911, 983, 1009, 1021, 1031, 1049, 1051, 1063, 1129, 1163, 1217
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
Appears to be a subsequence of A015919, A045344, A052085, A064555 and A143578.

Examples

			5 = 12_3 and 12_9 = 11 are both prime, so 5 is a term.
		

Crossrefs

Cf. A235265, A235473 - A235479, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@ Range@ 500, PrimeQ@ FromDigits[ IntegerDigits[#, 3], 9] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=9,c=3)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: Code only valid for b > c.

A279508 a(n) = smallest number k such that floor(phi(k)/tau(k)) = n.

Original entry on oeis.org

2, 1, 5, 7, 27, 11, 13, 58, 17, 19, 55, 23, 65, 106, 29, 31, 85, 142, 37, 158, 41, 43, 115, 47, 119, 125, 53, 133, 145, 59, 61, 254, 262, 67, 274, 71, 73, 298, 1180, 79, 187, 83, 203, 346, 89, 209, 235, 382, 97, 394, 101, 103, 169, 107, 109, 253, 113, 458, 295
Offset: 0

Views

Author

Jaroslav Krizek, Dec 13 2016

Keywords

Comments

a(n) = the smallest number k such that floor(A000010(k)/A000005(k)) = A279507(k) = n.
Sequences b_n of numbers k such that floor(phi(k)/tau(k)) = n for n = 0..2:
b_0: 2, 4, 6, 12;
b_1: 1, 3, 8, 10, 14, 16, 18, 20, 24, 30, 36, 42, 48, 60;
b_2: 5, 9, 15, 22, 28, 32, 40, 54, 66, 72, 84, 90, 96, 120, 180.
Sequences b_n are finite for all n >=0. See A279509 (largest number k such that floor(phi(k)/tau(k)) = n).
Supersequence of A045344 (primes excluding 3).

Examples

			For n = 2; a(2) = 5 because 5 is the smallest number with floor(phi(5) / tau(5)) = floor(4/2) = 2.
		

Crossrefs

Programs

  • Magma
    [Min([n: n in[1..100000] | Floor(EulerPhi(n)/NumberOfDivisors(n)) eq k]): k in [0..60]]
    
  • Mathematica
    Table[k = 1; While[Floor[EulerPhi[k]/DivisorSigma[0, k]] != n, k++]; k, {n, 0, 58}] (* Michael De Vlieger, Dec 14 2016 *)
  • PARI
    a(n) = my(k=1); while(floor((eulerphi(k)/numdiv(k)))!=n, k++); k \\ Felix Fröhlich, Dec 14 2016

Formula

a((p-1)/2) = p for p = prime > 3.

A343859 Partial sums of the primes excluding 3.

Original entry on oeis.org

2, 7, 14, 25, 38, 55, 74, 97, 126, 157, 194, 235, 278, 325, 378, 437, 498, 565, 636, 709, 788, 871, 960, 1057, 1158, 1261, 1368, 1477, 1590, 1717, 1848, 1985, 2124, 2273, 2424, 2581, 2744, 2911, 3084, 3263, 3444, 3635, 3828, 4025, 4224, 4435, 4658, 4885, 5114, 5347
Offset: 1

Views

Author

Omar E. Pol, May 01 2021

Keywords

Comments

Partial sums of the primes congruent to {1, 2} mod 3.

Crossrefs

Partial sums of A045344.
Apart from the initial term this is the column 4 of A343809.
Cf. A007504.

Programs

  • Mathematica
    Accumulate[Join[{2},Prime[Range[3,100]]]] (* Paolo Xausa, Sep 01 2023 *)

Formula

a(n) = A007504(n+1) - 3.

A173907 Primes of form x^y+y^x where x and y are composite numbers.

Original entry on oeis.org

43143988327398957279342419750374600193, 5052785737795758503064406447721934417290878968063369478337, 205688069665150755269371147819668813122841983204711281293004769, 3329896365316142756322307042065269797678257903507506764421250291562312417, 814539297859635326656252304265822609649892589675472598580095801187688932052096060144958129
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 02 2010

Keywords

Examples

			The first 5 terms are 15^32+32^15, 33^38+38^33, 8^69+69^8, 9^76+76^9, 21^68+68^21.
		

Crossrefs

Programs

  • Maple
    N:= 10^100: # for terms <= N
    R:= NULL:
    for x from 4 while 2*x^x < N do
      if isprime(x) then next fi;
      for y from x+1 do
        if igcd(x,y) > 1 or isprime(y) then next fi;
        q:= x^y + y^x;
        if q > N then break fi;
        if isprime(q) then R:= R,q  fi;
    od od:
    sort([R]); # Robert Israel, Jul 11 2025

Extensions

a(3)-a(5) from Franklin T. Adams-Watters, Mar 22 2010
Definition corrected by N. J. A. Sloane, Apr 13 2010

A176551 Products of 2 primes of the form 3*k-+1.

Original entry on oeis.org

4, 10, 14, 22, 25, 26, 34, 35, 38, 46, 49, 55, 58, 62, 65, 74, 77, 82, 85, 86, 91, 94, 95, 106, 115, 118, 119, 121, 122, 133, 134, 142, 143, 145, 146, 155, 158, 161, 166, 169, 178, 185, 187, 194, 202, 203, 205, 206, 209, 214, 215, 217, 218, 221, 226, 235, 247
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 20 2010

Keywords

Comments

Semiprimes without 3*primes (or triple the primes).
Numbers of the form A045344(i)*A045344(j), any i, j. [From R. J. Mathar, Apr 27 2010]

Crossrefs

Extensions

Entries checked by R. J. Mathar, Apr 27 2010

A176569 a(n) = (-1)^n + (n-th prime of the form 3k-+1).

Original entry on oeis.org

1, 6, 6, 12, 12, 18, 18, 24, 28, 32, 36, 42, 42, 48, 52, 60, 60, 68, 70, 74, 78, 84, 88, 98, 100, 104, 106, 110, 112, 128, 130, 138, 138, 150, 150, 158, 162, 168, 172, 180, 180, 192, 192, 198, 198, 212, 222, 228, 228, 234, 238, 242, 250, 258, 262, 270, 270, 278
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 20 2010

Keywords

Crossrefs

Cf. A045344.

Programs

  • Maple
    A045344 := proc(n) if n = 1 then 2; else ithprime(n+1) ; end if; end proc:
    A176569 := proc(n) (-1)^n+A045344(n) ; end proc:
    seq(A176569(n),n=1..120) ; # R. J. Mathar, Apr 27 2010
  • Mathematica
    Total /@ Nest[Append[#1, Block[{p = NextPrime@ #1[[-1, -1]]}, While[Mod[p, 3] == 0, p = NextPrime@ p]; {(-1)^#2, p}]] & @@ {#, Length@ # + 1} &, {{-1, 2}}, 57] (* Michael De Vlieger, Feb 09 2019 *)
  • PARI
    a045344(n) = if(n<2, 2, prime(n+1));
    a(n) = (-1)^n + a045344(n); \\ Michel Marcus, Feb 07 2019

Formula

a(n) = (-1)^n + A045344(n). - Michel Marcus, Feb 07 2019

Extensions

Corrected (double-5 replaced by double-6, 146 removed) by R. J. Mathar, Apr 27 2010

A215390 Primes congruent to {1, 2} mod 11.

Original entry on oeis.org

2, 13, 23, 67, 79, 89, 101, 167, 199, 211, 233, 277, 331, 353, 397, 409, 419, 431, 463, 541, 563, 607, 617, 661, 673, 683, 727, 739, 761, 827, 859, 881, 937, 947, 991, 1013, 1069, 1091, 1123, 1201, 1223, 1277, 1289, 1321, 1399, 1409, 1453, 1487
Offset: 1

Views

Author

Vincenzo Librandi, Aug 10 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | p mod 11 in [1, 2]];
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{1,2},Mod[#,11]]&]

A215391 Primes congruent to {1, 2} mod 13.

Original entry on oeis.org

2, 41, 53, 67, 79, 131, 157, 197, 223, 313, 353, 379, 431, 443, 457, 509, 521, 547, 587, 599, 613, 677, 691, 743, 769, 821, 859, 911, 937, 977, 1093, 1171, 1223, 1237, 1249, 1289, 1301, 1327, 1367, 1471, 1483, 1523, 1549, 1601, 1613, 1627, 1783, 1847
Offset: 1

Views

Author

Vincenzo Librandi, Aug 10 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | p mod 13 in [1, 2]];
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{1,2},Mod[#,13]]&]

A215392 Primes congruent to {1, 2} mod 17.

Original entry on oeis.org

2, 19, 53, 103, 137, 223, 239, 257, 307, 359, 409, 443, 461, 563, 613, 631, 647, 733, 919, 937, 953, 971, 1021, 1039, 1123, 1259, 1277, 1327, 1361, 1429, 1447, 1481, 1531, 1549, 1583, 1667, 1753, 1787, 1871, 1889, 1973, 2143, 2161, 2297, 2347, 2381, 2399, 2467
Offset: 1

Views

Author

Vincenzo Librandi, Aug 10 2012

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500) | p mod 17 in [1, 2]];
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{1,2},Mod[#,17]]&]
Previous Showing 11-20 of 23 results. Next