cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A117348 Near-multiperfects with primes and powers of 2 excluded, abs(sigma(m) mod m) <= log(m).

Original entry on oeis.org

6, 10, 20, 28, 70, 88, 104, 110, 120, 136, 152, 464, 496, 592, 650, 672, 884, 1155, 1888, 1952, 2144, 4030, 5830, 8128, 8384, 8925, 11096, 17816, 18632, 18904, 30240, 32128, 32445, 32760, 32896, 33664, 45356, 70564, 77744, 85936, 91388, 100804, 116624
Offset: 1

Views

Author

Walter Nissen, Mar 09 2006

Keywords

Comments

Sequences A117346 through A117350 are an attempt to improve on sequences A045768 through A045770, A077374, A087167, A087485 and A088007 through A088012 and related sequences (but not to replace them) by using a more significant definition of "near". E.g., is sigma(n) really "near" a multiple of n, for n = 9? Or n = 18? Sigma is the sum_of_divisors function.

Examples

			70 is a term because sigma(70) = 144 = 2 * 70 + 4, while 4 < log (70) ~= 4.248.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.

Crossrefs

Formula

sigma(n) = k * n + r, abs(r) <= log(n).

Extensions

Offset corrected by Amiram Eldar, Mar 05 2020

A230606 Numbers n such that sigma(n) = k*(n+1) for some integer k.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 20, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 104, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Jaroslav Krizek, Nov 29 2013

Keywords

Comments

Numbers n such that A108775(n) = floor(sigma(n) / n) = sigma(n) mod n = A054024(n).
Union primes (A000040) and composite numbers A045768 (k = 1 for primes p, k = 2 for composite numbers).

Examples

			20 is in sequence because sigma(20) = 42 = 2*21.
		

Crossrefs

Cf. A000203(sigma(n)), A054024 (sigma(n) mod n), A108775.
Cf. A045768 (sigma(n) == 2 (mod n)).

Programs

  • Mathematica
    Select[Range[300],Divisible[DivisorSigma[1,#],#+1]&] (* Harvey P. Dale, May 28 2019 *)

Extensions

Example clarified by Harvey P. Dale, May 28 2019

A181601 Numbers m with divisor 32 | m and abundance sigma(m)-2*m = 32.

Original entry on oeis.org

992, 28544, 122624, 507392, 537248, 698528, 791264, 1081568, 1279136, 2279072, 5029184, 307801856, 623799776, 712023296, 11196261056, 14809750016, 34355412992, 59640734144, 340536203264, 637707589184, 1091487733184, 1473169206272, 1709840369984, 2526522709184
Offset: 1

Views

Author

Vladimir Shevelev, Nov 01 2010

Keywords

Comments

A subsequence of A175989. - R. J. Mathar, Nov 04 2010

Crossrefs

Programs

  • Mathematica
    Select[32Range[1000000],DivisorSigma[1,#]-2#==32&] (* Harvey P. Dale, Aug 16 2011 *)

Extensions

Definition rephrased, a(5)-a(11) appended - R. J. Mathar, Nov 04 2010
a(12)-a(24) from Donovan Johnson, Dec 08 2011

A088820 Numbers k with abundance radius of 8, i.e., abs(sigma(k)-2*k) = 8.

Original entry on oeis.org

22, 56, 130, 184, 368, 836, 1012, 2272, 11096, 17816, 18904, 33664, 45356, 70564, 77744, 85936, 91388, 100804, 128768, 254012, 388076, 391612, 527872, 1090912, 2087936, 2291936, 13174976, 17619844, 29465852, 35021696, 45335936, 120888092, 260378492, 381236216
Offset: 1

Views

Author

Labos Elemer, Oct 20 2003

Keywords

Comments

Original definition: Abundance-radius=8, that is Abs[sigma[n]-2n]=8 (either +8 or -8). A045770 from 3rd term complemented by -8 cases.

Examples

			22 is in the sequence since sigma(22) = 1 + 2 + 11 + 22 = 36 = 2*22 - 8.
56 is in the sequence since sigma(56) = 1 + 2 + 4 + 7 + 8 + 14 + 28 + 56 = 120 = 2*56 + 8. - _Michael B. Porter_, Jul 20 2016
		

Crossrefs

Disjoint union of A088833 (abundance 8) and A125247 (deficiency 8).
Cf. A000203 (sigma), A033880 (abundance), A005100 (deficient numbers).

Programs

  • Magma
    [n: n in [1..2*10^7] | Abs(DivisorSigma(1, n) - 2*n) eq 8]; // Vincenzo Librandi, Jul 20 2016
  • Mathematica
    Select[Range[1, 10^6], Abs[DivisorSigma[1, #] - 2 #] == 8 &] (* Vincenzo Librandi, Jul 20 2016 *)
  • PARI
    is(n)=abs(sigma(n)-2*n)==8 \\ Use, e.g., select(is,[1..10^5]*2). - M. F. Hasler, Jul 19 2016
    

Extensions

More terms from David Wasserman, Aug 18 2005
Edited by M. F. Hasler, Jul 19 2016
a(33)-a(34) from Amiram Eldar, Mar 11 2025

A181599 Numbers m with divisor 16 | m and abundance sigma(m)-2*m = 16.

Original entry on oeis.org

1504, 30592, 4526272, 8353792, 361702144, 1081850752, 1845991216, 2146926592, 21818579968, 34357510144, 228354264064, 549746900992, 2169800814592, 8796057370624, 24038405705152, 80952364306432, 140737345748992, 2737658648639872, 23810602502029312, 36979953305070592
Offset: 1

Views

Author

Vladimir Shevelev, Nov 01 2010

Keywords

Crossrefs

Formula

A008598 INTERSECT A141547. - R. J. Mathar, Nov 04 2010

Extensions

Definition rephrased - R. J. Mathar, Nov 04 2010
a(9)-a(13) from Donovan Johnson, Dec 08 2011
a(14)-a(20) from the b-file at A141547 added by Amiram Eldar, Aug 03 2024

A063785 Numbers n such that sigma(n) = 2n + omega(n), where omega(n) is the number of distinct prime divisors of n.

Original entry on oeis.org

20, 104, 464, 1952, 4030, 5830, 130304, 522752, 1848964, 8382464, 134193152
Offset: 1

Views

Author

Jason Earls, Aug 17 2001

Keywords

Comments

It is easily proved that if 2^m-3 is prime then 2^(m-1)*(2^m-3) is in the sequence. - Farideh Firoozbakht, Feb 12 2008

Crossrefs

Cf. A045768.

Programs

  • PARI
    for(n=1,10^8, if(sigma(n)==2*n+omega(n),print(n)))
Previous Showing 21-26 of 26 results.