cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A226936 Number T(n,k) of squares of size k^2 in all tilings of an n X n square using integer-sided square tiles; triangle T(n,k), n >= 1, 1 <= k <= n, read by rows.

Original entry on oeis.org

1, 4, 1, 29, 4, 1, 312, 69, 4, 1, 5598, 1184, 153, 4, 1, 176664, 40078, 4552, 373, 4, 1, 9966344, 2311632, 285414, 18160, 917, 4, 1, 1018924032, 241967774, 30278272, 2128226, 74368, 2321, 4, 1, 190191337356, 45914039784, 5860964300, 411308056, 16210982, 311784, 5933, 4, 1
Offset: 1

Views

Author

Alois P. Heinz, Jun 22 2013

Keywords

Examples

			For n=3 there are [29, 4, 1] squares of sizes [1^2, 2^2, 3^3] in all tilings of a 3 X 3 square:
._._._.  ._._._.  ._._._.  ._._._.  ._._._.  ._._._.
|     |  |   |_|  |_|_|_|  |_|   |  |_|_|_|  |_|_|_|
|     |  |___|_|  |   |_|  |_|___|  |_|   |  |_|_|_|
|_____|  |_|_|_|  |___|_|  |_|_|_|  |_|___|  |_|_|_|.
Triangle T(n,k) begins:
n \ k        1          2         3        4      5     6   7   8
--:----------------------------------------------------------------
1 :          1;
2 :          4,         1;
3 :         29,         4,        1;
4 :        312,        69,        4,       1;
5 :       5598,      1184,      153,       4,     1;
6 :     176664,     40078,     4552,     373,     4,    1;
7 :    9966344,   2311632,   285414,   18160,   917,    4,  1;
8 : 1018924032, 241967774, 30278272, 2128226, 74368, 2321,  4,  1;
		

Crossrefs

Row sums give: A226554.
Main diagonal and lower diagonals give: A000012, A010709, A226892.
Cf. A045846.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then [0$2] elif n=0 then [1, 0]
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=[0$2];
             for i from k to nops(l) while l[i]=0 do s:= s+(h->h+
               [0, h[1]*x^(1+i-k)])(b(n, [l[j]$j=1..k-1,
               1+i-k$j=k..i, l[j]$j=i+1..nops(l)])) od; s
          fi
        end:
    T:= n-> seq(coeff(b(n, [0$n])[2],x,k), k=1..n):
    seq(T(n), n=1..10);
  • Mathematica
    $RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {0, 0}, n == 0, {1, 0}, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1, 1][[1, 1]]; s = {0, 0}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s + Function[h, h + {0, h[[1]]*x^(1+i-k)}][b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]] ] ] ] ]; s] ]; T[n_] := Table[Coefficient[b[n, Array[0&, n]][[2]], x, k], {k, 1, n}]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Dec 23 2013, translated from Maple *)

Formula

Sum_{k=1..n} T(n,k) = A226554(n).
Sum_{k=1..n} k^2 * T(n,k) = n^2 * A045846(n).

A211348 Number of ways to tile an n X n square with 1 X 1, 2 X 2 and 3 X 3 tiles.

Original entry on oeis.org

1, 1, 2, 6, 39, 467, 10290, 431842, 33702357, 4933399675, 1353257600290, 694985665826606, 668743276018647665, 1205268925168096642391, 4069023157203412697840109, 25732126785058509461002703360, 304814553338563601845965453449729
Offset: 0

Views

Author

Geoffrey H. Morley, Feb 05 2013

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to min(k+2, nops(l)) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; s
          fi
        end:
    a:= n-> b(n, [0$n]):
    seq(a(n), n=0..10);  # Alois P. Heinz, Feb 05 2013

Extensions

a(7)-a(16) from Alois P. Heinz, Feb 05 2013

A240120 Number of inequivalent ways to cut an n X n square into squares with integer sides, such that the dissection has reflective symmetry in both diagonals and no other reflective symmetries.

Original entry on oeis.org

0, 0, 0, 1, 1, 9, 19, 121, 275, 2489, 7217, 86775
Offset: 1

Views

Author

Ed Wynn, Apr 01 2014

Keywords

Comments

'Inequivalent' has the same sense as in A224239: we do not regard dissections that differ by a rotation and/or reflection as distinct.
The two reflective symmetries imply 180-degree (but not 90-degree) rotational symmetry.

Examples

			This is the single dissection for n=4:
---------
|   | | |
|   -----
|   | | |
---------
| | |   |
-----   |
| | |   |
---------
		

Crossrefs

A240121 Number of inequivalent ways to cut an n X n square into squares with integer sides, such that the dissection has two reflective symmetries in axes parallel to the sides, and no other reflective symmetries.

Original entry on oeis.org

0, 0, 0, 1, 0, 13, 5, 183, 75, 4408, 1501, 180324
Offset: 1

Views

Author

Ed Wynn, Apr 01 2014

Keywords

Comments

The two reflective symmetries imply 180-degree (but not 90-degree) rotational symmetry.

Examples

			This dissection is the only example for n=4:
---------
| |   | |
---   ---
| |   | |
---------
| |   | |
---   ---
| |   | |
---------
		

Crossrefs

A240122 Number of inequivalent ways to cut an n X n square into squares with integer sides, such that the dissection has 90-degree rotational symmetry and no reflective symmetry.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 12, 40, 154, 760, 3260, 22730
Offset: 1

Views

Author

Ed Wynn, Apr 01 2014

Keywords

Examples

			The two dissections for n=6:
-------------    -------------
| |   | | | |    | |   | | | |
---   -------    ---   -------
| |   | |   |    | |   | |   |
---------   |    ---------   |
| | |   |   |    | | | | |   |
-----   -----    -------------
|   |   | | |    |   | | | | |
|   ---------        ---------
|   | |   | |    |   | |   | |
-------   ---    -------   ---
| | | |   | |    | | | |   | |
-------------    -------------
		

Crossrefs

A240123 Number of inequivalent ways to cut an n X n square into squares with integer sides, such that the dissection has a reflective symmetry in one diagonal, but no other symmetries.

Original entry on oeis.org

0, 0, 1, 3, 19, 107, 847, 8647, 119835, 2255123, 58125783, 2050662011
Offset: 1

Views

Author

Ed Wynn, Apr 01 2014

Keywords

Comments

'Inequivalent' has the same sense as in A224239: we do not regard dissections that differ by a rotation and/or reflection as distinct.

Examples

			The three dissections for n=4:
---------    ---------    ---------
|   | | |    |   |   |    |     | |
|   -----    |   |   |    |     ---
|   | | |    |   |   |    |     | |
---------    ---------    |     ---
| | | | |    |   | | |    |     | |
---------    |   -----    ---------
| | | | |    |   | | |    | | | | |
---------    ---------    ---------
		

Crossrefs

A240124 Number of inequivalent ways to cut an n X n square into squares with integer sides, such that the dissection has 180-degree rotational symmetry, but no other symmetries.

Original entry on oeis.org

0, 0, 0, 0, 2, 19, 109, 1781, 13660, 397689, 5368943, 289864745
Offset: 1

Views

Author

Ed Wynn, Apr 01 2014

Keywords

Examples

			The two dissections for n=5:
-----------    -----------
|   |   | |    | |   | | |
|   |   ---    ---   -----
|   |   | |    | |   | | |
-----------    -----------
| | | | | |    | | | | | |
-----------    -----------
| |   |   |    | | |   | |
---   |   |    -----   ---
| |   |   |    | | |   | |
-----------    -----------
		

Crossrefs

A240125 Number of inequivalent ways to cut an n X n square into squares with integer sides, such that the dissection has one reflective symmetry in an axis parallel to a side, but no other symmetries.

Original entry on oeis.org

0, 0, 0, 3, 5, 138, 201, 13032, 19990, 4095612, 7026883, 4451051502
Offset: 1

Views

Author

Ed Wynn, Apr 01 2014

Keywords

Examples

			The three dissections for n=4, with the axis horizontal:
---------    ---------    ---------
|   | | |    |   | | |    | | | | |
|   -----    |   -----    ---------
|   | | |    |   |   |    |   | | |
---------    -----   |    |   -----
|   | | |    |   |   |    |   | | |
|   -----    |   -----    ---------
|   | | |    |   | | |    | | | | |
---------    ---------    ---------
		

Crossrefs

A221845 Number of prime dissections of an n X n square into integer-sided squares.

Original entry on oeis.org

1, 1, 5, 38, 471, 10661, 450923, 35863932, 5353011030, 1500957421749, 790347882174803, 781621363452395224, 1451740730942350766747, 5064070747064013555843107, 33176273260130056822126522407
Offset: 1

Views

Author

Geoffrey H. Morley, Jan 26 2013

Keywords

Comments

A dissection into squares was called prime by J. H. Conway in 1964 if the GCD of the sides of the squares is 1.

Examples

			For n = 3 the a(3) = 5 dissections are:
+-+-+-+   +-+-+-+   +-+-+-+   +-+---+   +---+-+
| | | |   | | | |   | | | |   | |   |   |   | |
+-+-+-+   +-+-+-+   +-+-+-+   +-+   |   |   +-+
| | | |   | |   |   |   | |   | |   |   |   | |
+-+-+-+   +-+   |   |   +-+   +-+-+-+   +-+-+-+
| | | |   | |   |   |   | |   | | | |   | | | |
+-+-+-+   +-+---+   +---+-+   +-+-+-+   +-+-+-+
		

References

  • J. H. Conway, Mrs Perkins's quilt, Proc. Camb. Phil. Soc., 60 (1964), 363-368.

Crossrefs

Extensions

Corrected and extended to a(15) by Geoffrey H. Morley, Feb 05 2013

A226897 a(n) is the total number of parts in the set of partitions of an n X n square lattice into squares, considering only the list of parts.

Original entry on oeis.org

1, 5, 16, 59, 156, 529, 1351, 3988, 10236, 27746, 66763, 176783, 412450
Offset: 1

Views

Author

Keywords

Comments

The sequence was derived from the documents in the Links section. The documents are first specified in the Links section of A034295.

Examples

			For n = 3, the partitions are:
Square side 1 2 3 Total Parts
            9 0 0     9
            5 1 0     6
            0 0 1     1
Total                16
So a(3) = 16.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then {} elif n=0 or l=[] then {0}
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:={};
             for i from k to nops(l) while l[i]=0 do s:=s union
                 map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
                     1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    a:= n-> add(coeff(add(j, j=b(n, [0$n])), x, i), i=1..n):
    seq(a(n), n=1..9);  # Alois P. Heinz, Jun 21 2013
  • Mathematica
    $RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which [Max[l]>n, {}, n == 0 || l == {}, {0}, Min[l]>0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1, 1][[1, 1]]; s = {}; For[i = k, i <= Length[l] && l[[i]]== 0, i++, s = s ~Union~ Map[Function[{v}, v+x^(1+i-k)], b[n, Join[l[[1 ;; k-1]], Array[1+i-k&, i-k+1], l[[i+1 ;; -1]] ]]]]; s]]; a[n_] := Sum[Coefficient[Sum[j, {j, b[n, Array[0&, n]]}], x, i], {i, 1, n}]; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, May 29 2015, after Alois P. Heinz *)
Previous Showing 11-20 of 26 results. Next