cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A085314 Number of distinct 11th powers modulo n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 9, 13, 14, 15, 9, 17, 14, 19, 15, 21, 22, 3, 15, 21, 26, 19, 21, 29, 30, 31, 17, 33, 34, 35, 21, 37, 38, 39, 25, 41, 42, 43, 33, 35, 6, 47, 27, 43, 42, 51, 39, 53, 38, 55, 35, 57, 58, 59, 45, 61, 62, 49, 33, 65, 66, 7, 51, 9, 70, 71, 35, 73, 74, 63
Offset: 1

Views

Author

Labos Elemer, Jun 27 2003

Keywords

Comments

Compare with enigmatic similarity of this and analogous odd-th power counts to A055653.
This sequence is multiplicative [Li]. - Leon P Smith, Apr 16 2005

Crossrefs

Cf. A000224[k=2], A046530[k=3], A052273[k=4], A052274[k=5], A052275[k=6], A085310[k=7], A085311[k=8], A085312[k=9], A085313[k=10], A228849[k=12], A055653.

Programs

  • Maple
    A085314 := proc(m)
        {seq( modp(b^11,m),b=0..m-1) };
        nops(%) ;
    end proc:
    seq(A085314(m),m=1..100) ; # R. J. Mathar, Sep 22 2017
  • Mathematica
    a[n_] := Table[PowerMod[i, 11, n], {i, 0, n - 1}] // Union // Length;
    Array[a, 100] (* Jean-François Alcover, Mar 25 2020 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1, #f[, 1], my(k=f[i, 1]^f[i, 2]); #vecsort(vector(k, i, i^11%k), , 8)) \\ Charles R Greathouse IV, Sep 05 2013

A228849 Number of distinct 12th powers modulo n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 6, 4, 2, 4, 4, 2, 5, 4, 4, 4, 4, 12, 12, 4, 6, 4, 4, 4, 8, 8, 6, 3, 12, 10, 4, 4, 4, 8, 4, 4, 11, 8, 8, 12, 4, 24, 24, 4, 8, 12, 10, 4, 14, 8, 12, 4, 8, 16, 30, 8, 6, 12, 4, 5, 4, 24, 12, 10, 24, 8, 36, 4, 7, 8, 12, 8, 12, 8, 14, 4, 10
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 05 2013

Keywords

Crossrefs

Cf. A000224 (squares), A046530 (cubic residues), A052273 (4th powers), A052274 (5th powers), A052275 (6th powers), A085310 (7th powers), A085311 (8th powers), A085312 (9th powers), A085313 (10th powers), A085314 (11th powers).

Programs

  • Magma
    [#Set([k^12 mod n : k in [1..n]]) : n in [1..81]];
    
  • Maple
    A228849 := proc(n)
        {seq(i^12 mod n, i=0..n-1)} ;
        nops(%) ;
    end proc: # R. J. Mathar, Sep 21 2017
  • Mathematica
    a[n_] := Table[PowerMod[i, 12, n], {i, 0, n - 1}] // Union // Length;
    Array[a, 100] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1, #f[, 1], my(k=f[i, 1]^f[i, 2]); #vecsort(vector(k, i, i^12%k), , 8)) \\ Charles R Greathouse IV, Sep 05 2013

A046630 Number of cubic residues mod 2^n.

Original entry on oeis.org

1, 2, 3, 5, 10, 19, 37, 74, 147, 293, 586, 1171, 2341, 4682, 9363, 18725, 37450, 74899, 149797, 299594, 599187, 1198373, 2396746, 4793491, 9586981, 19173962, 38347923, 76695845, 153391690, 306783379, 613566757, 1227133514, 2454267027
Offset: 0

Views

Author

Keywords

Examples

			For n=3, the cubes 0^3, 1^3, 2^3, ..., 7^3 reduced mod 2^3 = 8 are 0,1,0,3,0,5,0,7, five different values, so a(3)=5. - _N. J. A. Sloane_, Sep 30 2018
		

Crossrefs

Cf. A033138.

Programs

  • Maple
    A049347 := proc(n) op( (n mod 3)+1,[1,-1,0]) ;end proc:
    A046630 := proc(n) 2^(n+2)/7+2/3-(5*A049347(n)+A049347(n-1))/21 ; end proc: # R. J. Mathar, Feb 27 2011
  • Mathematica
    LinearRecurrence[{2, 0, 1, -2}, {1, 2, 3, 5}, 33] (* Jean-François Alcover, Nov 17 2017 *)
  • PARI
    a(n)=(4<Charles R Greathouse IV, Jan 03 2013

Formula

a(n) = ceiling(2^(n+2)/7) [Finch-Sebah, page 12]. - N. J. A. Sloane, Sep 30 2018
G.f.: (-2*x^3-x^2+1)/((1-2*x)*(1-x^3)).
a(n) = A046530(2^n) = 2^(n+2)/7 + 2/3 - (5*A049347(n)+A049347(n-1))/21. - R. J. Mathar, Feb 27 2011
a(n) = 1 + A033138(n) for n >= 1. - John Keith, Mar 07 2022

A046631 Number of cubic residues mod 3^n.

Original entry on oeis.org

1, 3, 3, 7, 21, 57, 169, 507, 1515, 4543, 13629, 40881, 122641, 367923, 1103763, 3311287, 9933861, 29801577, 89404729, 268214187, 804642555, 2413927663, 7241782989, 21725348961, 65176046881, 195528140643, 586584421923
Offset: 0

Views

Author

Keywords

Programs

Formula

G.f.: (-3*x^3-6*x^2+1)/((1-3*x)*(1-x^3)).
a(n) = A046530(3^n) = 4/3 + 3^(n+1)/13 - (22*A049347(n) - 16*A049347(n-1))/39. - R. J. Mathar, Feb 27 2011

A087786 a(n) = number of solutions to x^3 - y^3 == 0 (mod n).

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 19, 20, 27, 10, 11, 18, 37, 38, 15, 40, 17, 54, 55, 30, 57, 22, 23, 60, 45, 74, 135, 114, 29, 30, 91, 112, 33, 34, 95, 162, 109, 110, 111, 100, 41, 114, 127, 66, 135, 46, 47, 120, 175, 90, 51, 222, 53, 270, 55, 380, 165, 58, 59, 90, 181, 182, 513, 352, 185
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 06 2003

Keywords

Crossrefs

Programs

  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, v[i^3%n + 1]++); sum(i=0, n-1, v[i+1]^2)} \\ Andrew Howroyd, Jul 17 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); p^(2*(2*e\3)) + sum(i=0, (e-1)\3, if(p%3==1 || (p==3&&3*iAndrew Howroyd, Jul 17 2018

Formula

Multiplicative with a(p^e) = p^(2*floor(2*e/3)) + Sum_{i=0..floor((e-1)/3)} k*(p-1)*p^(e+i-1) where k = 3 if (p = 3 and 3*i+1 = e) or (p mod 3 = 1) otherwise k = 1. - Andrew Howroyd, Jul 17 2018

Extensions

More terms from John W. Layman, Oct 18 2003

A257301 Number of cubic nonresidues modulo n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 4, 3, 6, 0, 0, 3, 8, 8, 0, 6, 0, 12, 12, 5, 12, 0, 0, 9, 4, 16, 20, 19, 0, 0, 20, 13, 0, 0, 20, 27, 24, 24, 24, 15, 0, 24, 28, 11, 30, 0, 0, 18, 34, 8, 0, 37, 0, 40, 0, 41, 36, 0, 0, 15, 40, 40, 54, 27, 40, 0, 44, 17, 0, 40, 0, 57, 48, 48, 12, 55, 44, 48, 52, 30
Offset: 1

Views

Author

Stanislav Sykora, Apr 19 2015

Keywords

Comments

a(n) is the number of values r, 0<=r=0, (m^p)%n != r. Compared to quadratic nonresidues (p=2, sequence A095972), the most evident difference is the frequent occurrence of a(n)=0 (for values of n which belong to A074243).

Examples

			a(5)=0, because the set {(k^3)%5}, with k=0..4, evaluates to {0,1,3,2,4},
        with no missing residue values.
a(7)=4, because the set {(k^3)%7}, with k=0..6, evaluates to
        {0,1,1,6,1,6,6}, with missing residue values {2,3,4,5}.
		

Crossrefs

Nonresidues for other exponents: A095972 (p=2), A257302 (p=4), A257303 (p=5).

Programs

  • Maple
    seq(n - nops({seq(a^3 mod n,a=0..n-1)}), n=1..100); # Robert Israel, Apr 20 2015
  • Mathematica
    Table[Length[Complement[Range[n - 1], Union[Mod[Range[n]^3, n]]]], {n, 100}] (* Vincenzo Librandi, Apr 20 2015 *)
  • PARI
    nrespowp(n,p) = {my(v=vector(n),d=0);
      for(r=0,n-1,v[1+(r^p)%n]+=1);
      for(k=1,n,if(v[k]==0,d++));
      return(d);}
    a(n) = nrespowp(n,3)
    
  • PARI
    g(p, e)=if(p==3, (3^(e+1)+if(e%3==1, 30, if(e%3, 12, 10)))/13, if(p%3==2, (p^(e+2)+if(e%3==1, p^2+p, if(e%3, p^2+1, p+1)))/(p^2+p+1), (p^(e+2)+if(e%3==1, 3*p^2+3*p+2, if(e%3, 3*p^2+2*p+3, 2*p^2+3*p+3)))/3/(p^2+p+1)))
    a(n)=my(f=factor(n)); n-prod(i=1, #f~, g(f[i,1], f[i,2])) \\ Charles R Greathouse IV, Apr 20 2015

Formula

a(n) = n - A046530(n).
Satisfies a(A074243(n))=0.
Satisfies a(n) <= n-3 (residues 0, 1, and n-1 are always present).
a(n) = n - A046530(n). - Robert Israel, Apr 20 2015

A376202 Number of pairs 1 <= x <= y <= n-1 such that gcd(x,n) = gcd(y,n) = gcd(x+y,n) = 1 and 1/x + 1/y == 1/(x+y) mod n.

Original entry on oeis.org

0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 36, 0, 24, 0, 0, 0, 42, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 60, 0, 0, 0, 0, 0, 66, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 0, 60, 0, 0, 0, 96, 0, 0, 0, 0, 0, 102, 0, 0
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Comments

In general, 1/x + 1/y = 1/(x+y) is the wrong way to add fractions!
See A376203 for a(2*n-1)/2 and A376755 for a(6*n+1)/6.
From Robert Israel, Nov 06 2024: (Start)
If a(n) = 0 then a(m) = 0 whenever m is a multiple of n.
It appears that the primes p for which a(p) > 0 are A007645. (End)

Examples

			For n = 3 the a(3) = 2 solutions are (x,y) = (1,1) and (2,2).
For n = 7 the a(7) = 6 solutions are (x,y) = (1,2), (1,4), (2,4), (3,5), (3,6), (5,6).
		

Crossrefs

Programs

  • Maple
    a:=[];
    for n from 1 to 140 do
    c:=0;
    for y from 1 to n-1 do
    for x from 1 to y do
    if gcd(y,n) = 1 and gcd(x,n) = 1 and gcd(x+y,n) = 1  and (1/x + 1/y - 1/(x+y)) mod n = 0 then c:=c+1; fi;
    od: # od x
    od: # od y
    a:=[op(a),c];
    od: # od n
    a;
  • Python
    from math import gcd
    def A376202(n):
        c = 0
        for x in range(1,n):
            if gcd(x,n) == 1:
                for y in range(x,n):
                    if gcd(y,n)==gcd(z:=x+y,n)==1 and not (w:=z**2-x*y)//gcd(w,x*y*z)%n:
                        c += 1
        return c # Chai Wah Wu, Oct 06 2024

A376203 a(n) = A376202(2*n-1)/2.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 0, 0, 9, 6, 0, 0, 0, 0, 15, 0, 0, 18, 12, 0, 21, 0, 0, 21, 0, 0, 0, 18, 0, 30, 0, 0, 33, 0, 0, 36, 0, 0, 39, 0, 0, 0, 0, 0, 72, 30, 0, 48, 0, 0, 51, 0, 0, 54, 36, 0, 0, 0, 0, 0, 0, 0, 63, 42, 0, 108, 0, 0, 69
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Crossrefs

Programs

  • Python
    from math import gcd
    def A376203(n):
        c, m = 0, (n<<1)-1
        for x in range(1,m):
            if gcd(x,m) == 1:
                for y in range(x,m):
                    if gcd(y,m)==gcd(z:=x+y,m)==1 and not (w:=z**2-x*y)//gcd(w,x*y*z)%m:
                        c += 1
        return c>>1 # Chai Wah Wu, Oct 06 2024

A376755 a(n) = A376202(6*n+1)/6.

Original entry on oeis.org

1, 2, 3, 0, 5, 6, 7, 7, 0, 10, 11, 12, 13, 0, 24, 16, 17, 18, 0, 0, 21, 36, 23, 0, 25, 26, 27, 26, 0, 30, 0, 32, 33, 0, 35, 60, 37, 38, 0, 40, 72, 0, 72, 0, 45, 46, 47, 0, 0, 84, 51, 52, 0, 0, 55, 56, 49, 58, 0, 57, 61, 62, 63, 0, 0, 66, 120, 68, 0, 70, 120, 72
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Crossrefs

Programs

  • Python
    from math import gcd
    def A376755(n):
        c, m = 0, 6*n|1
        for x in range(1,m):
            if gcd(x,m) == 1:
                for y in range(x,m):
                    if gcd(y,m)==gcd(z:=x+y,m)==1 and not (w:=z**2-x*y)//gcd(w,x*y*z)%m:
                        c += 1
        return c//6 # Chai Wah Wu, Oct 06 2024

Extensions

a(51)-a(72) from Chai Wah Wu, Oct 06 2024

A376756 Number of pairs 0 <= x <= y <= n-1 such that x^2 + x*y + y^2 == 0 (mod n).

Original entry on oeis.org

1, 1, 3, 3, 1, 3, 7, 3, 6, 1, 1, 9, 13, 7, 3, 10, 1, 6, 19, 3, 21, 1, 1, 9, 15, 13, 18, 27, 1, 3, 31, 10, 3, 1, 7, 21, 37, 19, 39, 3, 1, 21, 43, 3, 6, 1, 1, 30, 70, 15, 3, 51, 1, 18, 1, 27, 57, 1, 1, 9, 61, 31, 60, 36, 13, 3, 67, 3, 3, 7, 1, 21, 73, 37, 45, 75, 7, 39, 79, 10, 45, 1, 1, 81, 1, 43, 3, 3, 1, 6, 163, 3, 93, 1, 19, 30, 97
Offset: 1

Views

Author

Tom Duff and N. J. A. Sloane, Oct 06 2024

Keywords

Crossrefs

Programs

  • Python
    def A376756(n):
        c = 0
        for x in range(n):
            z = x**2%n
            for y in range(x,n):
                if not (z+y*(x+y))%n:
                    c += 1
        return c # Chai Wah Wu, Oct 06 2024
Previous Showing 11-20 of 31 results. Next