cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A049125 Revert transform of (1 + x - x^2) / (1 + x)^2.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 68, 187, 534, 1544, 4554, 13576, 40968, 124681, 382636, 1182116, 3674674, 11483243, 36057516, 113701968, 359927638, 1143327888, 3643379152, 11643793399, 37311200060, 119852247220, 385864664018, 1244896820476
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ordered trees (A000108) with n edges in which every non-leaf non-root vertex has at most one leaf child. The g.f. A(x) is given by A(x)= x/(1-x B(x)) where B(x)=1+x+2x^2+4x^3+... is the g.f. for A143363. [David Callan, Aug 22 2014]
Conjecturally, the number of sequences (e(1), ..., e(n-1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(k). [Martinez and Savage, 2.10] - Eric M. Schmidt, Jul 17 2017
a(n) is the number of dissections of a convex (n+m)-sided polygon by non-intersecting diagonals such that the selected m consecutive sides of the polygon will be in the same subpolygon and create no triangles. - Muhammed Sefa Saydam, Jul 12 2025

Examples

			x + x^2 + 2*x^3 + 4*x^4 + 10*x^5 + 25*x^6 + 68*x^7 + 187*x^8 + 534*x^9 + ...
		

Programs

  • Mathematica
    a[1] = 1;
    a[n_] := SeriesCoefficient[InverseSeries[x(1+x-x^2)/(1+x)^2 + x O[x]^n, x], {x, 0, n}];
    Array[a, 28] (* Jean-François Alcover, Aug 17 2018, from PARI *)
    CoefficientList[InverseSeries[Series[x*(1 + x - x^2)/(1 + x)^2, {x, 0, 30}], x], x] (* Vaclav Kotesovec, Aug 17 2018 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( x * (1 + x - x^2) / (1 + x)^2 + x * O(x^n)), n))} /* Michael Somos, Jul 13 2003 */

Formula

Given g.f. A(x), then series reversion of B(x) = x + x * A(x) is -B(-x). - Michael Somos, Sep 07 2005
Given g.f. A(x), then B(x) = x + x * A(x) satisfies B(x) = x + C(x * B(x)) where C(x) is g.f. of A001764 offset 1.
D-finite with recurrence 5*n*(n-1)*(37*n-106)*a(n) -4*(n-1) *(74*n^2-323*n+288)*a(n-1) +16*(-74*n^3+508*n^2-1157*n+876)* a(n-2) +2*(2*n-5)*(37*n-69)*(n-4)*a(n-3)=0. - R. J. Mathar, Jun 24 2018
a(n) ~ (1+s)^2 / (2 * sqrt(Pi*(1+4*s)) * n^(3/2) * (s*(1 + s - s^2)/(1+s)^2)^(n - 1/2)), where s = 0.675130870566646070889621798150060480808032527677372732 = 2*cos(arctan(sqrt(37/27))/3)/sqrt(3) + 2*sin(arctan(sqrt(37/27))/3) - 1 is the root of the equation s^3 + 3*s^2 - s = 1. - Vaclav Kotesovec, Aug 17 2018
From Muhammed Sefa Saydam, Jul 12 2025: (Start)
a(n) = Sum_{k=1..n+1} A046736(k) * A046736(n-k+2), for A046736(1) = 1 and n >= 2.
a(n) = a(n-1) + Sum_{k=0..n-3} a(k) * A046736(n-k+1), for a(0) = 1 and n >= 3.
a(n) = a(n-1) + Sum_{k=1..n-2} A143363(k) * a(n-k-1), for a(0) = 1 and n >= 2. (End)

A253194 Number of ways to place non-intersecting diagonals in a convex (n+2)-gon so as to create no pentagons.

Original entry on oeis.org

1, 3, 10, 39, 162, 707, 3190, 14766, 69719, 334481, 1625846, 7989908, 39631204, 198151579, 997623275, 5053274850, 25734158411, 131680565544, 676693557574, 3490897656337, 18071699948492, 93851485181749, 488815126122166
Offset: 1

Views

Author

Michael D. Weiner, Mar 24 2015

Keywords

Examples

			a(3)=10 because the pentagon allows all but the null placement, i.e., 5 placements of 1 diagonal and 5 placements of two diagonals.
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[(InverseSeries[Series[(y-2*y^2+y^4-y^5)/(1-y),{y,0,24}],x]-x)/x,x]]
  • PARI
    A253194(n)=sum(i=0,(n-1)\3,sum(k=i+1,n-2*i, (-1)^i*binomial(n+k,k)*binomial(k,i)*binomial(n-3*i-1,k-i-1)),if(n%3==0,(-1)^(n/3)*binomial(4*n/3,n/3)))/(n+1) \\ M. F. Hasler, Apr 07 2015

Formula

a(n) = (1/(n+1))*Sum_{i=0..floor(n/3)} Sum_{k=i+1..n-2*i} (-1)^i*binomial(n+k,k)*binomial(k,i)*binomial(n-3*i-1,k-i-1), n !== 0 (mod 3),
a(n) = ((-1)^(n/3)/(n+1))*binomial(4*n/3,n/3) + (1/(n+1))*Sum_{i=0..(n/3)-1} Sum_{k=i+1..n-2*i} (-1)^i*binomial(n+k,k)*binomial(k,i)*binomial(n-3*i-1,k-i-1), n == 0 (mod 3).
Recurrence: 275*(n-2)*(n-1)*n*(n+1)*(13962464*n^5 - 196202616*n^4 + 1069508732*n^3 - 2802358002*n^2 + 3480787751*n - 1597000860)*a(n) = 900*(n-2)*(n-1)*n*(27924928*n^6 - 406367696*n^5 + 2336399896*n^4 - 6678345644*n^3 + 9735406192*n^2 - 6526643891*n + 1424056473)*a(n-1) - 8*(n-2)*(n-1)*(1870970176*n^7 - 30033090896*n^6 + 197840216728*n^5 - 682911269612*n^4 + 1297104157966*n^3 - 1273486799084*n^2 + 486871358313*n + 21712608900)*a(n-2) - 16*(n-2)*(2569093376*n^8 - 47662201536*n^7 + 375012676176*n^6 - 1627682459628*n^5 + 4239503473896*n^4 - 6734585440155*n^3 + 6299789310412*n^2 - 3112752665481*n + 598681926090)*a(n-3) + 16*(2457393664*n^9 - 54190809728*n^8 + 518749193184*n^7 - 2816319789288*n^6 + 9492888047100*n^5 - 20388222826734*n^4 + 27407291375141*n^3 - 21462176121217*n^2 + 8117426803296*n - 745665750648)*a(n-4) - 8*(n-4)*(2*n - 7)*(4*n - 17)*(4*n - 11)*(13962464*n^5 - 126390296*n^4 + 424322908*n^3 - 631422862*n^2 + 369599799*n - 31302531)*a(n-5). - Vaclav Kotesovec, Mar 30 2015

A365691 G.f. satisfies A(x) = 1 + x^2*A(x)^5 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 1, 1, 6, 12, 54, 147, 593, 1886, 7292, 25204, 96153, 348304, 1327716, 4946471, 18936366, 71827598, 276612103, 1062220253, 4115807184, 15947902376, 62148513732, 242485933208, 949828266722, 3726623622402, 14663689944397, 57798199213989
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k-1, n-2*k)*binomial(n+3*k+1, k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,n-2*k) * binomial(n+3*k+1,k) / (n+3*k+1).

A366112 Expansion of (1/x) * Series_Reversion( x*(1-x-x^5)/(1-x) ).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 7, 14, 22, 31, 41, 103, 235, 457, 791, 1261, 2399, 5015, 10257, 19676, 35296, 65170, 127520, 256187, 507601, 969495, 1834433, 3534477, 6962249, 13809538, 27061252, 52439361, 101701035, 199152071, 393332277, 776589611, 1525416837
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[x*(1-x-x^5)/(1-x),{x,0,41}]]/x,x] (* Stefano Spezia, Aug 21 2025 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n+k, k)*binomial(n-4*k-1, n-5*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} binomial(n+k,k) * binomial(n-4*k-1,n-5*k).

A368934 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 * (1-x-x^2) ).

Original entry on oeis.org

1, 3, 16, 104, 751, 5789, 46656, 388377, 3313304, 28816513, 254548840, 2277498340, 20596833817, 187974816142, 1729033498416, 16012809644088, 149186508912927, 1397300099214753, 13149137686976324, 124262625068365924, 1178796712807563025
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+k, k)*binomial(4*n-k+2, n-2*k))/(n+1);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^2*(1-x-x^2))/x)

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(4*n-k+2,n-2*k).

A090985 Triangle read by rows: T(n,k) is the number of dissections of a convex n-gon by nonintersecting diagonals, having exactly k triangles (n >= 2, k >= 0).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 5, 0, 5, 4, 6, 21, 0, 14, 8, 35, 28, 84, 0, 42, 25, 80, 216, 120, 330, 0, 132, 64, 309, 540, 1155, 495, 1287, 0, 429, 191, 890, 2475, 3080, 5720, 2002, 5005, 0, 1430, 540, 3058, 7788, 16302, 16016, 27027, 8008, 19448, 0, 4862, 1616, 9580, 30108, 54964, 96005, 78624, 123760, 31824, 75582, 0, 16796
Offset: 2

Views

Author

Emeric Deutsch, Feb 28 2004

Keywords

Comments

T(n,n-2) = [binomial(2n-4, n-2)]/(n-1) = Catalan(n-2) (A000108).
T(n,n-4) = binomial(2n-5, n-4) (A002054).
T(n,n-5) = binomial(2n-6, n-5) (A002694).
T(n,0) = A046736(n).
Row sums give the little Schroeder numbers (A001003).

Examples

			T(5,1)=5 because the dissections of a convex pentagon having exactly one triangle are obtained by the placement of a diagonal between any pair of non-adjacent vertices.
T(6,0)=4 because the dissections of a convex hexagon with no triangles are obtained by the null placement and by placing one diagonal between any of the 3 pairs of opposite vertices.
Triangle starts:
  1;
  0,  1;
  1,  0,  2;
  1,  5,  0,  5;
  4,  6, 21,  0, 14;
  8, 35, 28, 84,  0, 42;
  ...
		

Crossrefs

Programs

  • Maple
    T := (n,k)->binomial(n+k-2,k)*sum(binomial(n-2+k+i,i)*binomial(n-3-k-i,i-1), i=0..floor((n-2-k)/2))/(n-1): seq(seq(T(n,k),k=0..n-2),n=2..14);
  • Mathematica
    T [n_, k_] := Binomial[n+k-2, k] Sum[Binomial[n-2+k+i, i] Binomial[n-3-k-i, i-1], {i, 0, (n-2-k)/2}]/(n-1);
    Table[T[n, k], {n, 2, 12}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Jul 29 2018 *)

Formula

T(n, k) = binomial(n+k-2, k)*(Sum_{i=0..floor((n-2-k)/2)} binomial(n-2+k+i, i)*binomial(n-3-k-i, i-1))/(n-1).
G.f.: G=G(t, z) satisfies (1-t)G^3 + (1+t)zG^2 - z^2*(1+z)G + z^4 = 0.

A256752 Number of ways to place non-intersecting diagonals in a convex (n+2)-gon so as to create no hexagons.

Original entry on oeis.org

1, 3, 11, 44, 190, 859, 4015, 19248, 94117, 467575, 2353443, 11975568, 61505088, 318406927, 1659801852, 8704865907, 45898065978, 243163198928, 1293769867676, 6910165762943, 37036898772008, 199140325574519, 1073849938338566
Offset: 1

Views

Author

Michael D. Weiner, Apr 09 2015

Keywords

Examples

			a(3)=11 because all 11 dissections of the pentagon are allowed, i.e., the null placement, 5 placements of 1 diagonal and 5 placements of two diagonals.
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[(InverseSeries[Series[(y-2*y^2+y^5-y^6)/(1-y), {y, 0, 24}], x]-x)/x, x]]

Formula

a(n) = (1/(n+1))*Sum_{i=0..floor(n/4)} Sum_{k=i+1..n-3*i} (-1)^i*binomial(n+k,k)*binomial(k,i)*binomial(n-4*i-1,k-i-1), n !== 0 (mod 4),
a(n) = ((-1)^(n/4)/(n+1))*binomial(5*n/4,n/4) + (1/(n+1))*Sum_{i=0..(n/4)-1} Sum_{k=i+1..n-3*i} (-1)^i*binomial(n+k,k)*binomial(k,i)*binomial(n-4*i-1,k-i-1), n == 0 (mod 4).
Previous Showing 11-17 of 17 results.