cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A366632 Number of distinct prime divisors of 7^n - 1.

Original entry on oeis.org

2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 4, 7, 3, 6, 6, 6, 4, 7, 4, 8, 6, 6, 5, 11, 5, 5, 9, 8, 5, 10, 5, 8, 8, 5, 7, 11, 5, 6, 7, 11, 5, 11, 4, 10, 10, 6, 4, 14, 8, 8, 9, 8, 5, 12, 6, 13, 8, 6, 6, 17, 6, 8, 9, 11, 9, 13, 6, 9, 9, 15, 4, 18, 7, 7, 10, 8, 9, 13, 4, 16, 13
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(7^n - 1), ", "))

Formula

a(n) = omega(7^n-1) = A001221(A024075(n)).

A366660 Number of distinct prime divisors of 9^n - 1.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 3, 5, 6, 5, 5, 7, 3, 6, 8, 6, 6, 9, 5, 7, 8, 8, 4, 12, 7, 6, 11, 9, 7, 12, 6, 7, 10, 9, 8, 12, 6, 8, 12, 11, 6, 14, 4, 12, 16, 7, 8, 15, 10, 12, 13, 9, 6, 15, 11, 14, 13, 10, 5, 18, 5, 10, 16, 8, 9, 15, 6, 13, 13, 15, 7, 19, 7, 10, 19, 13, 11
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(9^n - 1), ", "))

Formula

a(n) = omega(9^n-1) = A001221(A024101(n)).
a(n) = A133801(2*n) = A133801(n) + A366580(n) - 1. - Max Alekseyev, Jan 07 2024

A060443 Table T(n,k) in which n-th row lists prime factors of 2^n - 1 (n >= 2), without repetition.

Original entry on oeis.org

0, 1, 3, 7, 3, 5, 31, 3, 7, 127, 3, 5, 17, 7, 73, 3, 11, 31, 23, 89, 3, 5, 7, 13, 8191, 3, 43, 127, 7, 31, 151, 3, 5, 17, 257, 131071, 3, 7, 19, 73, 524287, 3, 5, 11, 31, 41, 7, 127, 337, 3, 23, 89, 683, 47, 178481, 3, 5, 7, 13, 17, 241
Offset: 0

Views

Author

Keywords

Comments

For n > 1, the length of row n is A046800(n). - T. D. Noe, Aug 06 2007

Examples

			From _Wolfdieter Lang_, Sep 23 2017: (Start)
The irregular triangle T(n,k) begins for n >= 2:
n\k      1   2    3    4   5
2:       3
3:       7
4:       3   5
5:      31
6:       3   7
7:     127
8:       3   5   17
9:       7  73
10:      3  11   31
11:     23  89
12:      3   5    7   13
13:   8191
14:      3  43  127
15:      7  31  151
16:      3   5   17  257
17: 131071
18:      3   7   19   73
19: 524287
20:      3   5   11   31  41
... (End)
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

Crossrefs

Programs

  • Mathematica
    Array[FactorInteger[2^# - 1][[All, 1]] &, 25, 0] (* Paolo Xausa, Apr 18 2024 *)

A366604 Number of distinct prime divisors of 4^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 3, 6, 6, 5, 3, 8, 3, 7, 6, 7, 4, 9, 7, 7, 6, 8, 6, 11, 3, 7, 8, 7, 9, 12, 5, 7, 7, 9, 5, 12, 5, 10, 11, 9, 6, 12, 5, 12, 10, 10, 6, 12, 11, 11, 8, 9, 6, 15, 3, 8, 11, 9, 9, 14, 5, 10, 8, 15, 6, 17, 6, 10, 13, 11, 10, 16, 5
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[4^Range[100]-1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    for(n = 1, 100, print1(omega(4^n - 1), ", "))
    
  • Python
    from sympy import primenu
    def A366604(n): return primenu((1<<(n<<1))-1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = omega(4^n-1) = A001221(A024036(n)).
a(n) = A046800(2*n) = A046799(n) + A046800(n). - Max Alekseyev, Jan 07 2024

A366651 Number of distinct prime divisors of 8^n - 1.

Original entry on oeis.org

1, 2, 2, 4, 3, 4, 3, 6, 3, 6, 4, 8, 4, 6, 6, 9, 5, 6, 4, 11, 6, 8, 4, 12, 7, 7, 6, 12, 6, 11, 3, 12, 8, 10, 10, 12, 6, 8, 9, 15, 5, 11, 5, 14, 10, 8, 6, 17, 5, 13, 8, 16, 8, 12, 10, 17, 7, 10, 6, 21, 5, 7, 9, 15, 8, 15, 6, 19, 9, 20, 7, 18, 7, 12, 14, 16, 9
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(8^n - 1), ", "))

Formula

a(n) = omega(8^n-1) = A001221(A024088(n)).
a(n) = A046800(3*n). - Max Alekseyev, Jan 09 2024

A366611 Number of distinct prime divisors of 5^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 2, 4, 4, 5, 2, 6, 2, 5, 6, 6, 3, 7, 4, 8, 5, 6, 3, 8, 7, 5, 8, 7, 4, 11, 3, 8, 5, 6, 8, 11, 4, 8, 5, 11, 3, 12, 3, 9, 11, 6, 2, 11, 3, 11, 7, 8, 4, 14, 8, 9, 6, 7, 3, 17, 4, 7, 10, 11, 7, 12, 6, 11, 8, 14, 3, 16, 4, 8, 15, 11, 6, 11, 4, 15
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(5^n - 1), ", "))

Formula

a(n) = omega(5^n-1) = A001221(A024049(n)).

A325612 Width (number of leaves) of the rooted tree with Matula-Goebel number 2^n - 1.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 1, 4, 5, 3, 6, 7, 4, 5, 7, 6, 7, 11, 7, 7, 9, 10, 7, 13, 7, 11, 9, 11, 11, 13, 11, 12, 15, 16, 10, 19, 19, 15, 18, 16, 16, 18, 10, 18, 18, 17, 15, 21, 15, 18, 24, 23, 19, 23, 25, 25, 18, 26, 25, 28, 21, 21, 25, 23, 21, 29, 28, 31, 21, 24, 23
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
For n > 1, a(n) is the multiplicity of q(1) = 2 in the q-factorization of 2^n - 1.

Examples

			The rooted tree with Matula-Goebel number 2047 = 2^11 - 1 is (((o)(o))(ooo(o))), which has 6 leaves (o's), so a(11) = 6.
		

Crossrefs

Matula-Goebel numbers: A007097, A061775, A109082, A109129, A196050, A317713.
Mersenne numbers: A046051, A046800, A059305, A325610, A325611, A325625.

Programs

  • Mathematica
    mglv[n_]:=If[n==1,1,Total[Cases[FactorInteger[n],{p_,k_}:>mglv[PrimePi[p]]*k]]];
    Table[mglv[2^n-1],{n,30}]

Extensions

More terms from Jinyuan Wang, Feb 25 2025

A325610 Adjusted frequency depth of 2^n - 1.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 3, 3, 3, 3, 5, 1, 3, 3, 3, 1, 5, 1, 5, 5, 3, 3, 5, 3, 3, 3, 3, 3, 5, 1, 3, 3, 3, 3, 5, 3, 3, 3, 5, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 1, 3, 5, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 5, 3, 3, 3, 5, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[fdadj[2^n-1],{n,100}]

A325611 Number of nodes in the rooted tree with Matula-Goebel number 2^n - 1.

Original entry on oeis.org

1, 3, 4, 6, 6, 8, 7, 10, 10, 12, 12, 15, 12, 14, 16, 18, 14, 20, 16, 23, 20, 22, 22, 25, 25, 24, 23, 29, 26, 30, 27, 31, 33, 28, 32, 38, 36, 31, 36, 40, 37, 38, 33, 43, 44, 42, 39, 48, 39, 49, 45, 48, 43, 49, 49, 53, 47, 54, 47, 61
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Then a(n) is one plus the number of factors (counted with multiplicity) in the q-factorization of 2^n - 1.

Examples

			The rooted tree with Matula-Goebel number 2047 = 2^11 - 1 is (((o)(o))(ooo(o))), which has 12 nodes (o's plus brackets), so a(11) = 12.
		

Crossrefs

Matula-Goebel numbers: A007097, A061775, A109082, A109129, A196050, A317713.
Mersenne numbers: A046051, A046800, A059305, A325610, A325612, A325625.

Programs

  • Mathematica
    mgwt[n_]:=If[n==1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>mgwt[PrimePi[p]]*k]]];
    Table[mgwt[2^n-1],{n,30}]

A325625 Sorted prime signature of 2^n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The sorted prime signature of n is row n of A124010.

Examples

			We have 2^126 - 1 = 3^3 * 7^2 * 19 * 43 * 73 * 127 * 337 * 5419 * 92737 * 649657 * 77158673929, so row n = 126 is {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3}.
Triangle begins:
  1
  1
  1
  1 1
  1
  1 2
  1
  1 1 1
  1 1
  1 1 1
  1 1
  1 1 1 2
  1
  1 1 1
  1 1 1
  1 1 1 1
  1
  1 1 1 3
  1
  1 1 1 1 2
		

Crossrefs

Programs

  • Mathematica
    Table[Sort[Last/@FactorInteger[2^n-1]],{n,30}]
Previous Showing 11-20 of 35 results. Next