cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 123 results. Next

A373821 Run-lengths of run-lengths of first differences of odd primes.

Original entry on oeis.org

1, 11, 1, 19, 1, 1, 1, 5, 1, 6, 1, 16, 1, 27, 1, 3, 1, 1, 1, 6, 1, 9, 1, 29, 1, 2, 1, 18, 1, 1, 1, 5, 1, 3, 1, 17, 1, 19, 1, 30, 1, 17, 1, 46, 1, 17, 1, 27, 1, 30, 1, 5, 1, 36, 1, 41, 1, 10, 1, 31, 1, 44, 1, 4, 1, 14, 1, 6, 1, 2, 1, 32, 1, 13, 1, 17, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of A333254.
The first term other than 1 at an odd positions is at a(101) = 2.
Also run-lengths (differing by 0) of run-lengths (differing by 0) of run-lengths (differing by 1) of composite numbers.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with run-lengths:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, ...
with run-lengths a(n).
		

Crossrefs

Run-lengths of run-lengths of A046933(n) = A001223(n) - 1.
Run-lengths of A333254.
A000040 lists the primes.
A001223 gives differences of consecutive primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.
For prime runs: A001359, A006512, A025584, A067774, A373406.
For composite runs: A005381, A008864, A054265, A176246, A251092, A373403.

Programs

  • Mathematica
    Length/@Split[Length /@ Split[Differences[Select[Range[3,1000],PrimeQ]]]//Most]//Most

A375703 Minimum of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers.

Original entry on oeis.org

2, 5, 10, 17, 26, 28, 33, 37, 50, 65, 82, 101, 122, 126, 129, 145, 170, 197, 217, 226, 244, 257, 290, 325, 344, 362, 401, 442, 485, 513, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1001, 1025, 1090, 1157, 1226, 1297, 1332, 1370, 1445, 1522, 1601, 1682, 1729
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2024

Keywords

Comments

Non-perfect-powers A007916 are numbers without a proper integer root.

Examples

			The list of all non-perfect-powers, split into runs, begins:
   2   3
   5   6   7
  10  11  12  13  14  15
  17  18  19  20  21  22  23  24
  26
  28  29  30  31
  33  34  35
  37  38  39  40  41  42  43  44  45  46  47  48
Row n has length A375702, first a(n), last A375704, sum A375705.
		

Crossrefs

For prime numbers we have A045344.
For nonsquarefree numbers we have A053806, anti-runs A373410.
For nonprime numbers we have A055670, anti-runs A005381.
For squarefree numbers we have A072284, anti-runs A373408.
The anti-run version is A216765 (same as A375703 with 2 exceptions).
For non-prime-powers we have A373673, anti-runs A120430.
For prime-powers we have A373676, anti-runs A373575.
For runs of non-perfect-powers (A007916):
- length: A375702 = A053289(n+1) - 1.
- first: A375703 (this)
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.
A046933 counts composite numbers between primes.
A375736 gives lengths of anti-runs of non-prime-powers, sums A375737.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Min/@Split[Select[Range[100],radQ],#1+1==#2&]//Most
    - or -
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Select[Range[100],radQ[#]&&!radQ[#-1]&]

Formula

Numbers k > 0 such that k-1 is a perfect power (A001597) but k is not.

A375704 Maximum of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers.

Original entry on oeis.org

3, 7, 15, 24, 26, 31, 35, 48, 63, 80, 99, 120, 124, 127, 143, 168, 195, 215, 224, 242, 255, 288, 323, 342, 360, 399, 440, 483, 511, 528, 575, 624, 675, 728, 783, 840, 899, 960, 999, 1023, 1088, 1155, 1224, 1295, 1330, 1368, 1443, 1520, 1599, 1680, 1727, 1763
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
Also numbers k > 0 such that k is a perfect power (A001597) but k+1 is not.

Examples

			The list of all non-perfect-powers, split into runs, begins:
   2   3
   5   6   7
  10  11  12  13  14  15
  17  18  19  20  21  22  23  24
  26
  28  29  30  31
  33  34  35
  37  38  39  40  41  42  43  44  45  46  47  48
Row n begins with A375703(n), ends with a(n), adds up to A375705(n), and has length A375702(n).
		

Crossrefs

For nonprime numbers: A006093, min A055670, anti-runs A068780, min A005381.
For prime numbers we have A045344.
Inserting 8 after 7 gives A045542.
For nonsquarefree numbers we have A072284(n) + 1, anti-runs A068781.
For squarefree numbers we have A373415, anti-runs A007674.
For prime-powers we have A373674 (min A373673), anti-runs A006549 (A120430).
Non-prime-powers: A373677 (min A373676), anti-runs A255346 (min A373575).
The anti-run version is A375739.
A001597 lists perfect-powers, differences A053289.
A046933 counts composite numbers between primes.
A375736 gives lengths of anti-runs of non-prime-powers, sums A375737.
For runs of non-perfect-powers (A007916):
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (this) (same as A045542 with 8 removed)
- sum: A375705

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Max/@Split[Select[Range[100],radQ],#1+1==#2&]//Most
    - or -
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Select[Range[100],radQ[#]&&!radQ[#+1]&]

Formula

For n > 2 we have a(n) = A045542(n+1).

A375736 Length of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.

Examples

			The initial anti-runs are the following, whose lengths are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For squarefree numbers we have A373127, runs A120992.
For nonprime numbers we have A373403, runs A176246.
For nonsquarefree numbers we have A373409, runs A053797.
For prime-powers we have A373576, runs A373675.
For non-prime-powers (exclusive) we have A373672, runs A110969.
For runs instead of anti-runs we have A375702.
For anti-runs of non-perfect-powers:
- length: A375736 (this)
- first: A375738
- last: A375739
- sum: A375737
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Length/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most

A375740 Numbers k such that A007916(k+1) - A007916(k) = 1. In other words, the k-th non-perfect-power is 1 less than the next.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Positions in A007916 of numbers k such that k+1 is also a member.
Positions of 1's in A375706 (first differences of A007916).
Non-perfect-powers (A007916) are numbers with no proper integer roots.

Examples

			The non-perfect-powers are 2, 3, 5, 6, 7, 10, 11, 12, 13, ... which increase by one after positions 1, 3, 4, 6, ...
		

Crossrefs

The version for non-prime-powers is A375713, differences A373672.
The complement is A375714, differences A375702.
The version for prime-powers is A375734, differences A373671.
The complement for non-prime-powers is A375928, differences A110969.
A000040 lists the prime numbers, differences A001223.
A000961 lists prime-powers (inclusive), differences A057820.
A001597 lists perfect-powers, differences A053289.
A002808 lists the composite numbers, differences A073783.
A018252 lists the nonprime numbers, differences A065310.
Non-perfect-powers:
- terms: A007916
- differences: A375706
- anti-runs: A375737, A375738, A375739, A375736.
Non-prime-powers (exclusive):
- terms: A361102
- differences: A375708
- anti-runs: A373679, A373575, A255346, A373672

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Join@@Position[Differences[Select[Range[100],radQ]],1]
  • Python
    from itertools import count, islice
    from sympy import perfect_power
    def A375740_gen(): # generator of terms
        a, b = -1, 0
        for n in count(2):
            c = not perfect_power(n)
            if c:
                a += 1
            if b&c:
                yield a
        b = c
    A375740_list = list(islice(A375740_gen(), 52)) # Chai Wah Wu, Sep 11 2024

A377288 Numbers k such that there are exactly two prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

4, 9, 30, 327, 3512
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Comments

Is this sequence finite? For this conjecture see A053706, A080101, A366833.
Any further terms are > 10^12. - Lucas A. Brown, Nov 08 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24, 25, 26, 27, 28) contains the prime-powers 25 and 27, so 9 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933 elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The corresponding primes are A053706.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
These are the positions of 2 in A080101, or 3 in A366833.
For at least one prime-power we have A377057, primes A053607.
For no prime-powers we have A377286.
For exactly one prime-power we have A377287.
For squarefree instead of prime-power see A377430, A061398, A377431, A068360.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==2&]

Formula

prime(a(n)) = A053706(n).

A373405 Sum of the n-th maximal antirun of odd primes differing by more than two.

Original entry on oeis.org

3, 5, 18, 30, 71, 109, 202, 199, 522, 210, 617, 288, 990, 372, 390, 860, 701, 1281, 829, 1194, 1645, 4578, 852, 2682, 4419, 3300, 2927, 2438, 1891, 2602, 14660, 1632, 1650, 3378, 3480, 18141, 2052, 3121, 2112, 4310, 8922, 13131, 6253, 3851, 3889, 3929, 13788
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this run is given by A027833 (except initial term).
An antirun of a sequence (in this case A000040\{2}) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row-sums of:
   3
   5
   7  11
  13  17
  19  23  29
  31  37  41
  43  47  53  59
  61  67  71
  73  79  83  89  97 101
		

Crossrefs

The partial sums are a subset of A071148 (partial sums of odd primes).
Functional neighbors: A001359, A006512, A027833 (partial sums A029707), A373404, A373406, A373411, A373412.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.

Programs

  • Mathematica
    Total/@Split[Select[Range[3,1000],PrimeQ],#1+2!=#2&]//Most

A373406 Sum of the n-th maximal run of odd primes differing by two.

Original entry on oeis.org

15, 24, 36, 23, 60, 37, 84, 47, 53, 120, 67, 144, 79, 83, 89, 97, 204, 216, 113, 127, 131, 276, 300, 157, 163, 167, 173, 360, 384, 396, 211, 223, 456, 233, 480, 251, 257, 263, 540, 277, 564, 293, 307, 624, 317, 331, 337, 696, 353, 359, 367, 373, 379, 383
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this run is given by A251092.
For this sequence we define a run to be an interval of positions at which consecutive terms differ by two. Normally, a run has consecutive terms differing by one, but odd prime numbers already differ by at least two.
Contains A054735 (sums of twin prime pairs) without its first two terms and A007510 (non-twin primes) as subsequences. - R. J. Mathar, Jun 07 2024

Examples

			Row-sums of:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
  83
  89
  97
		

Crossrefs

The partial sums are a subset of A071148 (partial sums of odd primes).
Functional neighbors: A025584, A054265, A067774, A251092 (or A175632), A373405, A373413, A373414.
A000040 lists the primes, differences A001223.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    Total/@Split[Select[Range[3,100],PrimeQ],#1+2==#2&]//Most

A375713 Indices of consecutive non-prime-powers (A361102) differing by 1. Numbers k such that the k-th and (k+1)-th non-prime-powers differ by just one.

Original entry on oeis.org

5, 8, 9, 15, 16, 17, 19, 20, 23, 24, 27, 28, 30, 31, 32, 33, 36, 38, 40, 41, 44, 45, 46, 47, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 67, 68, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 85, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2024

Keywords

Examples

			The initial non-prime-powers are 1, 6, 10, 12, 14, 15, 18, 20, 21, which first increase by one after the fifth and eighth terms.
		

Crossrefs

The inclusive version is a(n) - 1.
For prime-powers inclusive (A000961) we have A375734, differences A373671.
For nonprime numbers (A002808) we have A375926, differences A373403.
For prime-powers exclusive (A246655) we have A375734(n+1) + 1.
First differences are A373672.
Positions of 1's in A375708.
For non-perfect-powers we have A375740.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!PrimePowerQ[#]&]],1]

Formula

A361102(k+1) - A361102(k) = 1.

A141042 Product of n and the n-th gap between primes: a(n) = n*A001223(n).

Original entry on oeis.org

1, 4, 6, 16, 10, 24, 14, 32, 54, 20, 66, 48, 26, 56, 90, 96, 34, 108, 76, 40, 126, 88, 138, 192, 100, 52, 108, 56, 116, 420, 124, 192, 66, 340, 70, 216, 222, 152, 234, 240, 82, 420, 86, 176, 90, 552, 564, 192, 98, 200, 306, 104
Offset: 1

Views

Author

Omar E. Pol, Jul 30 2008

Keywords

Comments

a(n) is also the area under the curve of the function pi(x) from prime(n) to prime(n+1), see the illustration of initial terms. This sequence is also the first differences of A152535. - Omar E. Pol, Nov 13 2013

Examples

			a(5)=10 because the 5th prime is 11 and the 6th prime is 13. The 5th gap between primes is 2, then a(5)=5*2=10.
		

Crossrefs

Programs

  • Maple
    P:= [seq(ithprime(i),i=1..1001)]:
    seq(n*(P[n+1]-P[n]),n=1..1000); # Robert Israel, Nov 26 2015
  • Mathematica
    Table[n*(Prime[n+1] - Prime[n]), {n, 100}] (* T. D. Noe, Nov 14 2013 *)
    With[{nn=60},Times@@@Thread[{Range[nn],Differences[Prime[Range[nn+1]]]}]] (* Harvey P. Dale, Dec 18 2018 *)
  • PARI
    diff(v)=vector(#v-1, i, (v[i+1]-v[i])*i);
    diff(primes(100)) \\ Altug Alkan, Nov 26 2015

Formula

a(n) = n*(A000040(n+1)-A000040(n)) = n*A001223(n).
a(n) = n*(1 + A046933(n)). [Omar E. Pol, Nov 16 2008]

Extensions

Corrected definition and example. - Omar E. Pol, Nov 16 2008
Name and example corrected by Bob Selcoe and Robert Israel, Nov 26 2015
Previous Showing 51-60 of 123 results. Next