cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A236207 Numbers not divisible by 5 or 11.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 67, 68, 69, 71, 72, 73, 74, 76, 78, 79, 81, 82, 83, 84, 86, 87, 89, 91, 92, 93, 94, 96, 97
Offset: 1

Views

Author

Oleg P. Kirillov, Jan 20 2014

Keywords

Crossrefs

Intersection of A047201 and A160542.

Programs

  • Mathematica
    Select[Range[100], Mod[#, 5] > 0 && Mod[#, 11] > 0 &] (* or *) Select[Range[100], Or @@ Divisible[#, {5, 11}] == False &] (* Bruno Berselli, Mar 24 2014 *)

A236217 Numbers not divisible by 3, 5 or 11.

Original entry on oeis.org

1, 2, 4, 7, 8, 13, 14, 16, 17, 19, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 46, 47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 89, 91, 92, 94, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 116, 118, 119, 122, 124, 127, 128
Offset: 1

Views

Author

Oleg P. Kirillov, Jan 20 2014

Keywords

Comments

Numbers coprime to 165. The asymptotic density of this sequence is 16/33. - Amiram Eldar, Oct 23 2020

Crossrefs

Intersection of: A160542 and A229829; A047201 and A229968; A001651, A047201 and A160542.

Programs

  • Mathematica
    Select[Range[200], Mod[#, 3] > 0 && Mod[#, 5] > 0 && Mod[#, 11] > 0 &] (* or *) Select[Range[200], Or @@ Divisible[#, {3, 5, 11}] == False &] (* Bruno Berselli, Mar 24 2014 *)
    Select[Range[130], CoprimeQ[165, #] &] (* Amiram Eldar, Oct 23 2020 *)

Formula

a(n) = a(n-1) + a(n-80) - a(n-81) for n > 81. - Bruno Berselli, Mar 25 2014

A344320 Number of partitions of n into consecutive parts not divisible by 5.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 3, 1, 1, 2, 2, 2, 3, 2, 2, 1, 2, 3, 1, 3, 2, 2, 2, 2, 2, 2, 3, 1, 3, 3, 2, 1, 3, 1, 3, 1, 4, 2, 1, 3, 3, 1, 4, 2, 2, 1, 3, 2, 2, 4, 1, 3, 3, 1, 2, 4, 3, 1, 2, 3, 1, 2, 4, 2, 4, 2, 3, 2, 1, 3, 2, 1, 4, 4, 2, 1, 3, 2, 2, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2021

Keywords

Examples

			a(13) = 3 because we have [13], [7, 6] and [6, 4, 3].
		

Crossrefs

A374290 7-rough powerful numbers: numbers k coprime to 30 such that if a prime p divides k then p^2 also divides k.

Original entry on oeis.org

1, 49, 121, 169, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2197, 2209, 2401, 2809, 3481, 3721, 4489, 4913, 5041, 5329, 5929, 6241, 6859, 6889, 7921, 8281, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 14161, 14641, 16129, 16807, 17161, 17689, 18769
Offset: 1

Views

Author

Amiram Eldar, Jul 02 2024

Keywords

Comments

This sequence is closed under multiplication.
The least term that is not a power of a prime (A000961) is a(25) = 7^2*11^2 = 5929.

Crossrefs

Intersection of A007775 and A001694.
Intersection of A229829 and A062739.
Intersection of A047201 and A374289.

Programs

  • Mathematica
    powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[20000], CoprimeQ[#, 30] && powQ[#] &]
  • PARI
    is(k) = gcd(k, 30) == 1 && ispowerful(k);

Formula

Sum_{n>=1} 1/a(n) = 80*zeta(2)*zeta(3)/(147*zeta(6)) = (80/147) * A082695 = 1.05773955745... .
In general, the sum of reciprocals of the p-rough powerful numbers is (zeta(2)*zeta(3)/zeta(6)) * Product_{prime q < p} ((q-1)*q/(q^2-q+1)).

A053448 Multiplicative order of 5 mod m, where gcd(m, 5) = 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 2, 6, 5, 2, 4, 6, 4, 16, 6, 9, 6, 5, 22, 2, 4, 18, 6, 14, 3, 8, 10, 16, 6, 36, 9, 4, 20, 6, 42, 5, 22, 46, 4, 42, 16, 4, 52, 18, 6, 18, 14, 29, 30, 3, 6, 16, 10, 22, 16, 22, 5, 6, 72, 36, 9, 30, 4, 39, 54, 20, 82, 6, 42, 14, 10, 44, 12, 22, 6, 46, 8, 96, 42, 30, 25, 16
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A050977. - R. J. Mathar, Oct 21 2012

Crossrefs

Cf. A047201, A002326 (order of 2), A053446 (order of 3), A053447 (order of 4).

Programs

  • Mathematica
    MultiplicativeOrder[5, #] & /@ Select[ Range@ 100, GCD[5, #] == 1 &] (* Robert G. Wilson v, Apr 05 2011 *)
  • PARI
    lista(nn) = {for(n=1, nn, if (gcd(n, 5) == 1, print1(znorder(Mod(5, n)), ", ")););} \\ Michel Marcus, Feb 09 2015

Formula

a(n) = multiplicative order of 5 modulo floor((5*n-1)/4), for n >= 1. This modulus is A047201(n). - Wolfdieter Lang, Sep 30 2020

A336450 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2*5^6.

Original entry on oeis.org

1, -3, 4, 9, 16, 25, 36, 49, -56, 64, 81, 88, -104, 121, 144, -167, 169, 177, 196, -203, -243, -255, 256, 277, 289, 324, 361, -363, 373, -395, -411, 441, 484, 529, 576, 676, 709, -719, 729, 784, 841, 961, 1017, 1024, -1028, 1080, 1089, -1091, 1156, 1296, 1369
Offset: 1

Views

Author

XU Pingya, Aug 08 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
Let x = a^(2*m) - (a^m)*t - t^2, y = a^(2*m) + (a^m)*t - t^2, z = t^2; then x^3 + y^3 + 2*z^3 = 2*a^(6*m). When a = 5, m = 1, t = 5*n + k(k = {1, 2, 3, 4}); (x, y, z) are primitive solutions of equation. Thus, A047201(n)^2 are terms of the sequence.

Examples

			(-20)^3 + 34^3 + 2*(-3)^3 = 31250, -3 is a term.
(-11)^3 + 29^3 + 2*16^3 = 15^3 + 27^3 + 2*16^3 = 31250, 16 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (31250 - x^3 - 2z^3)^(1/3) /. (-1)^(1/3) -> -1;
    If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -1369, 1369}, {x, -Round[(Abs[31250 - 2z^3]/3)^(1/2)], Round[(Abs[31250 - 2z^3]/3)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 2739}];
    Select[v, MemberQ[u, #] &]

A348306 List of Agathokakological Numbers "k": string of digits of the juxtaposition of the prime factors of k has the same length as k but these digits do not appear in k.

Original entry on oeis.org

10, 14, 21, 49, 106, 111, 118, 129, 134, 146, 158, 161, 166, 177, 201, 219, 249, 259, 267, 329, 343, 413, 511, 553, 623, 1011, 1029, 1046, 1077, 1081, 1101, 1106, 1114, 1119, 1138, 1149, 1167, 1186, 1227, 1299, 1318, 1354, 1358, 1363, 1418, 1454, 1466, 1538, 1541, 1546, 1561, 1589, 1591
Offset: 1

Views

Author

Samuel Harkness, Oct 11 2021

Keywords

Comments

Theorem: (See PDF "PROOFS" in Links)
Of Agathokakological Numbers k,
No k have a leading 9.
No k end in 2 or 5.
10 is the only k to end in 0. It is also the only k with 5 as a prime factor.
Can only be square terms when k is of the order 10^m where m is odd.
For k written as a*10^m, k can only be even when 1<=a<1.888...
Empirical observation: When graphed with the log of the n-th term on x axis and the log of the n-th term's value on the y axis a pattern appears with a similar shape for each new power of ten (see figure "LogLogGraph" in Links)
Special cases 28651 = 7*4093 and 65821 = 7*9043 use all digits 0-9 once.
"Agathokakological" is a Greek word meaning "composed of both good and evil." (Merriam-Webster) The composition (prime factorization) of Agathokakological Numbers is both good (same length) and evil (no common digits).

Examples

			158 = 2 * 79 since {2,7,9} do not appear in {1,5,8} and both have 3 digits.
		

Crossrefs

Intersection of A035139 and A109608.
Subsequence of A047201 from n=2.

Programs

  • Mathematica
    q[n_] := Module[{d = IntegerDigits[n], f = FactorInteger[n]}, Length[d] == Plus @@ ((Last[#]*IntegerLength[First[#]]) & /@ f ) && Intersection[d, Join @@ IntegerDigits[f[[;; , 1]]]] == {}]; Select[Range[1600], q] (* Amiram Eldar, Oct 12 2021 *)
  • PARI
    digsf(n) = my(f=factor(n), list=List()); for (k=1, #f~, my(dk=digits(f[k,1])); for (i=1, f[k,2], for (j=1, #dk, listput(list, dk[j])))); Vec(list);
    isokd(m) = my(df=digsf(m), d=digits(m)); (#df == #d) && (#setintersect(Set(df), Set(d)) == 0); \\ Michel Marcus, Oct 11 2021
    
  • Python
    from sympy import factorint
    def ok(n):
        s, f = str(n), factorint(n)
        pfd = set("".join(str(p) for p in f))
        if set(s) & pfd != set(): return False
        return len(s) == sum(len(str(p))*f[p] for p in f)
    print(list(filter(ok, range(1601)))) # Michael S. Branicky, Oct 11 2021

A361913 a(n) is the number of steps in the main loop of the Pollard rho integer factorization algorithm for n, with x=2, y=2 and g(x)=x^2-1.

Original entry on oeis.org

2, 2, 2, 1, 2, 4, 2, 2, 1, 2, 2, 3, 2, 1, 2, 4, 2, 3, 1, 2, 2, 8, 2, 1, 2, 2, 2, 4, 1, 4, 2, 2, 2, 1, 2, 6, 2, 2, 1, 5, 2, 6, 2, 1, 2, 11, 2, 4, 1, 2, 2, 5, 2, 1, 2, 2, 2, 7, 1, 3, 2, 2, 2, 1, 2, 4, 2, 2, 1, 3, 2, 8, 2, 1, 2, 2, 2, 10, 1, 2, 2, 12, 2, 1, 2, 2
Offset: 2

Views

Author

DarĂ­o Clavijo, Mar 29 2023

Keywords

Comments

x=2 and y=2 are the minimum effective values for Pollard rho, but any x = y > 2 would give the same answer.
n is in A217562 if gcd(n, a(n)) > 1.
n is in A047201 if gcd(phi(n), a(n)) > 1, where phi is Euler's totient function.

Crossrefs

Cf. A005563.

Programs

  • Python
    from gmpy2 import *
    def a(n):
      c,d,x,y,g = 0,1,2,2,lambda x:pow(x,2,n)-1
      while d == 1:
        c,x,y =c+1,g(x),g(g(y))
        d = gcd(abs(x-y), n)
      return c

A380233 Odd abundant numbers not divisible by 5 that are also doublets (cf. A020338).

Original entry on oeis.org

153153, 171171, 189189, 207207, 243243, 261261, 279279, 297297, 351351, 459459, 513513, 567567, 621621, 729729, 783783, 837837, 891891, 999999, 1392313923, 1556115561, 1719917199, 1883718837, 2034920349, 2211322113, 2375123751, 2538925389, 2702727027, 3194131941, 4176941769, 4668346683
Offset: 1

Views

Author

Omar E. Pol, Jan 17 2025

Keywords

Comments

There are 26 odd abundant numbers not divisible by 5 less than 10^6. The surprising fact is that 18 of them are doublets.
Another interesting fact is that here there are no terms with 8 digits.

Crossrefs

Intersection of A064001 and A020338.

Programs

  • Maple
    doublet:= n -> n * (10^(1+ilog10(n))+1):
    select(t -> numtheory:-sigma(t) > 2*t, [seq(seq(doublet(10*x+i),i=[1,3,7,9]),x=1..10000); # Robert Israel, Jan 17 2025
  • Mathematica
    Select[Table[FromDigits[Join[#, #] &@ IntegerDigits[n]], {n, Select[Range[50000], CoprimeQ[#, 10] &]}], DivisorSigma[-1, #] > 2 &] (* Amiram Eldar, Jan 17 2025 *)
  • PARI
    select(x->((x%5) && (sigma(x)>2*x)), vector(50000, n, eval(Str(2*n-1, 2*n-1)))) \\ Michel Marcus, Jan 17 2025

Extensions

More terms from Michel Marcus, Jan 17 2025

A274466 Least number that is not divisible by 5 and the sum of two positive squares in exactly n ways.

Original entry on oeis.org

2, 221, 2873, 6409, 97682, 83317, 8254129, 237133, 1416389, 14080573, 2789895602, 3082729, 41075281, 82150562, 239369741, 9722453, 403139914489, 52406393, 6733146600397009, 520981201, 40453486229, 6941722489, 13883444978, 126391889, 69177855149
Offset: 1

Views

Author

Altug Alkan, Jun 24 2016

Keywords

Examples

			a(2) = 221 because 221 = 5^2 + 14^2 = 10^2 + 11^2.
		

Crossrefs

Programs

  • Mathematica
    nR[n_] := (SquaresR[2, n] + Plus @@ Pick[{-4, 4}, IntegerQ /@ Sqrt[{n, n/2}]])/8; qn[w_] := Block[{z = Floor[(1/2) Times @@ (w + 1)]}, If[And @@ (EvenQ /@ w), z + {0, 1}, {z}]]; ric[w_, t_] := Block[{u = qn[w]}, If[ MemberQ[u, t], Sow@w];If[ Min[u] < t, ric[Append[w, 1], t]; u = w; u[[-1]]++; If[Length[u] == 1 || u[[-1]] <= u[[-2]], ric[u, t]]]]; val[w_] := {1, 2} Times @@ (Take[{13, 17, 29, 37, 41, 53}, Length@w]^w); a[1] =2; a[n_] := Min@ Select[ Flatten[ val /@ Reap[ric[{1}, n]][[2, 1]]], nR[#] == n &]; Array[a, 25] (* Giovanni Resta, Jun 27 2016 *)

Extensions

a(7)-a(25) from Giovanni Resta, Jun 27 2016
Previous Showing 41-50 of 52 results. Next