A323674
Square array, read by antidiagonals, of the positive integers 6cd +-c +-d = (6c +- 1)d +- c. Alternate rows (or columns) are numbers that differ by c from multiples of 6c - 1 or 6c + 1.
Original entry on oeis.org
4, 6, 6, 9, 8, 9, 11, 13, 13, 11, 14, 15, 20, 15, 14, 16, 20, 24, 24, 20, 16, 19, 22, 31, 28, 31, 22, 19, 21, 27, 35, 37, 37, 35, 27, 21, 24, 29, 42, 41, 48, 41, 42, 29, 24, 26, 34, 46, 50, 54, 54, 50, 46, 34, 26, 29, 36, 53, 54, 65, 60, 65, 54, 53, 36, 29, 31, 41, 57, 63, 71, 73, 73, 71, 63, 57, 41, 31
Offset: 1
Square array begins:
4, 6, 9, 11, 14, 16, 19, 21, 24, 26, ...
6, 8, 13, 15, 20, 22, 27, 29, 34, 36, ...
9, 13, 20, 24, 31, 35, 42, 46, 53, 57, ...
11, 15, 24, 28, 37, 41, 50, 54, 63, 67, ...
14, 20, 31, 37, 48, 54, 65, 71, 82, 88, ...
16, 22, 35, 41, 54, 60, 73, 79, 92, 98, ...
19, 27, 42, 50, 65, 73, 88, 96, 111, 119, ...
21, 29, 46, 54, 71, 79, 96, 104, 121, 129, ...
24, 34, 53, 63, 82, 92, 111, 121, 140, 150, ...
26, 36, 57, 67, 88, 98, 119, 129, 150, 160, ...
...
Note that, for example, the third row (or column) contains numbers that differ by 2 from multiples of 11 = 6*2 - 1, and the eighth row contains numbers that differ by 4 from multiples of 25 = 6*4 + 1.
The diagonal is
A062717, the numbers x for which 6*x + 1 is a perfect square.
-
a(m,n) = 6*floor((m+1)/2)*floor((n+1)/2) + ((-1)^n)*floor((m+1)/2) + ((-1)^m)*floor((n+1)/2);
matrix(7, 7, n, k, a(n, k)) \\ Michel Marcus, Jan 25 2019
A074226
Numbers n such that Kronecker(3,n) = 1.
Original entry on oeis.org
1, 4, 10, 11, 13, 14, 16, 23, 25, 34, 35, 37, 38, 40, 44, 47, 49, 52, 56, 58, 59, 61, 62, 64, 71, 73, 82, 83, 85, 86, 92, 95, 97, 100, 106, 107, 109, 110, 119, 121, 130, 131, 133, 134, 136, 140, 143, 145, 148, 152, 154, 155, 157, 158, 160, 167, 169, 176, 178, 179
Offset: 1
-
Select[Range@ 180, KroneckerSymbol[3, #]== 1 &] (* Indranil Ghosh, Mar 16 2017 *)
-
for (x=1,200, for (y=1,200,if (kronecker(x,y)==moebius(gcd(x,y)),write("km.txt",x,";",y," : ",kronecker(x,y)))))
-
is(n)=kronecker(3,n)>0 \\ Charles R Greathouse IV, Apr 06 2012
A319168
Frobenius pseudoprimes == 1,4 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1.
Original entry on oeis.org
4181, 6721, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 90061, 96049, 97921, 118441, 146611, 163081, 186961, 197209, 219781, 252601, 254321, 257761, 268801, 272611, 283361, 302101, 303101, 330929, 399001, 433621, 438751, 489601, 512461, 520801
Offset: 1
4181 = 37*113 is composite, while Fibonacci(4180) == 0 (mod 4181), Fibonacci(4181) == 1 (mod 4181), so 4181 is a term.
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (from Dana Jacobsen's site)
- Jon Grantham, Frobenius pseudoprimes, Mathematics of Computation 70 (234): 873-891, 2001. doi: 10.1090/S0025-5718-00-01197-2.
- Dana Jacobsen, Pseudoprime Statistics, Tables, and Data.
- A. Rotkiewicz, Lucas and Frobenius Pseudoprimes, Annales Mathematicae Silesiane, 17 (2003): 17-39.
- Eric Weisstein's World of Mathematics, Frobenius Pseudoprime.
-
for(n=2,500000,if(!isprime(n) && (n%5==1||n%5==4) && fibonacci(n-kronecker(5,n))%n==0 && (fibonacci(n)-kronecker(5,n))%n==0, print1(n, ", ")))
A348600
Triangle read by rows: T(n,k) is the number of (unlabeled) connected graphs with n nodes and metric dimension k, 0 <= k < n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 13, 6, 1, 0, 1, 62, 39, 9, 1, 0, 1, 275, 488, 77, 11, 1, 0, 1, 1710, 8116, 1145, 130, 14, 1, 0, 1, 12061, 216432, 29958, 2415, 196, 16, 1, 0, 1, 93706, 9512947, 2026922, 78265, 4434, 276, 19, 1
Offset: 1
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8 9
---+------------------------------------------------
1 | 1
2 | 0 1
3 | 0 1 1
4 | 0 1 4 1
5 | 0 1 13 6 1
6 | 0 1 62 39 9 1
7 | 0 1 275 488 77 11 1
8 | 0 1 1710 8116 1145 130 14 1
9 | 0 1 12061 216432 29958 2415 196 16 1
10 | 0 1 93706 9512947 2026922 78265 4434 276 19 1
- Gary Chartrand, Linda Eroh, Mark A. Johnson, and Ortrud R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000), 99-113.
- Richard C. Tillquist, Rafael M. Frongillo, and Manuel E. Lladser, Getting the lay of the land in discrete space: a survey of metric dimension and its applications, arXiv:2104.07201 [math.CO], 2021.
- Wikipedia, Metric dimension
Comments