cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A143901 Rectangular array R by antidiagonals: R(m,n) = floor((m*n+1)/2).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 4, 5, 4, 3, 3, 5, 6, 6, 5, 3, 4, 6, 8, 8, 8, 6, 4, 4, 7, 9, 10, 10, 9, 7, 4, 5, 8, 11, 12, 13, 12, 11, 8, 5, 5, 9, 12, 14, 15, 15, 14, 12, 9, 5, 6, 10, 14, 16, 18, 18, 18, 16, 14, 10, 6, 6, 11, 15, 18, 20, 21, 21, 20, 18, 15, 11, 6, 7, 12, 17, 20, 23, 24, 25, 24
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2008

Keywords

Comments

Old name was: R(m,n) = number of white squares.

Examples

			Northwest corner:
1 1 2 2 3 3 4 4
1 2 3 4 5 6 7 8
2 3 5 6 8 9 11 12
2 4 6 8 10 12 14 16
		

Crossrefs

Cf. A143902.
Antidiagonal sums: (1,2,6,10,19,...)=A005993.
Rows and columns: A004526, A000027, A007494, A005843, A047218 et al.

Extensions

Entry revised by N. J. A. Sloane, Jun 12 2015

A192328 Numbers of the form 20*k+7 which are three times a square.

Original entry on oeis.org

27, 147, 507, 867, 1587, 2187, 3267, 4107, 5547, 6627, 8427, 9747, 11907, 13467, 15987, 17787, 20667, 22707, 25947, 28227, 31827, 34347, 38307, 41067, 45387, 48387, 53067, 56307, 61347, 64827, 70227, 73947, 79707, 83667, 89787, 93987
Offset: 1

Views

Author

Bruno Berselli, Jun 28 2011

Keywords

Comments

Text of the theorem in the paper mentioned in References: The necessary and sufficient condition so that a number of the form 20*k+7 is three times a square is that k is of the form 3*h*(5*h+3)+1 or 3*h*(5*h+7)+7.
A119617 gives the values of k.
A080512*120 gives the first differences.

References

  • "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno) - Mar 1901 - p. 75 (Problem 286 and its generalization, G. Cardoso-Laynes).

Crossrefs

Programs

  • Magma
    [m: m in [7..10^5 by 20] | IsSquare(m/3)];
    
  • Maple
    select(t -> issqr(t/3), [seq(20*i+7,i=1..10000,3)]); # Robert Israel, Apr 28 2023
  • Mathematica
    Select[20 Range[5000] + 7, IntegerQ[Sqrt[#/3]] &] (* or *) LinearRecurrence[{1,2,-2,-1,1}, {27,147,507,867,1587}, 40] (* Harvey P. Dale, Jul 06 2011 *)
    CoefficientList[Series[3 (9 + 40 x + 102 x^2 + 40 x^3 + 9 x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 35}], x] (* Vincenzo Librandi, Aug 19 2013 *)
  • PARI
    for(k=0, 5*10^3, m=20*k+7; if(issquare(m/3), print1(m",")));
    
  • PARI
    a(n)=my(m=n--\4); 1200*m^2+[360*m+27, 840*m+147, 1560*m+507, 2040*m+867][n%4+1] \\ Charles R Greathouse IV, Jun 29 2011

Formula

G.f.: 3*x*(9 + 40*x + 102*x^2 + 40*x^3 + 9*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 3*((10*(n-1) + (-1)^(n-1) + 5)/2)^2.
a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
Sum_{i=1..n} a(i) = n*(50*(n-1)*(n+1) + 15*(-1)^(n-1) + 39)/2.
a(n) = 3*A020742(A047218(n))^2.

Extensions

Offset corrected by Mohammed Yaseen, Apr 27 2023

A332102 Least m > 0 such that 2*m^n <= Sum_{k < m} k^n.

Original entry on oeis.org

3, 5, 8, 10, 13, 15, 18, 20, 23, 25, 28, 30, 33, 35, 38, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 79, 82, 84, 87, 89, 92, 94, 97, 99, 102, 104, 107, 109, 112, 114, 116, 119, 121, 124, 126, 129, 131, 134, 136, 139, 141, 144, 146, 149, 151, 153, 156, 158, 161, 163, 166
Offset: 0

Views

Author

M. F. Hasler, Apr 18 2020

Keywords

Comments

Obviously a(n) is a lower limit for any s solution to 2*s^n = Sum_{x in S} x^n, S subset of {1, ..., s-1}.
First differences are (2, 3, 2, 3, ...) except for a duplicated 2 in positions {16, 31, 46, 61, 76, 91; 104, 119, 134, 149, 164, 179, 194, 209, 224, 239, 254, 269; 282, 297, ...}: Here the first differences are always 15 except for a 13 after the 6th, 18th, ... term.

Examples

			For n=0, 2*m^0 = 2 > Sum_{k<m} k^0 = m - 1 <=> 3 > m, so a(0) = 3.
For n=1, 2*m^1 > Sum_{k<m} k^1 = m(m-1)/2 <=> 4 > m - 1, so a(1) = 5.
		

Crossrefs

Cf. A332101 (same without factor 2 in definition).
Cf. A195168, A047218, A029919 (all have common initial terms but differ later and only remain lower resp. upper bounds).

Programs

  • Mathematica
    Table[Block[{m = 1, s = 0}, While[2 m^n > s, s = s + m^n; m++]; m], {n, 0, 66}] (* Michael De Vlieger, Apr 30 2020 *)
  • PARI
    apply( A332102(n, s)=for(m=1, oo, s<2*m^n||return(m); s+=m^n), [0..66])

Formula

a(n) >= A195168(n+1) with equality for n not in {13, 15; 26, 28, 30; 39, 41, 43, 45; 52, 54, ..., 60; 65, 67, ..., 75, 78, 80, ..., 90; 89, 91, ..., 103; 102, 104, ..., 114, 115, ...} \ {120, 122, 124, 126, 135, 137, 139, 150, 152, 165}.
a(n) <= A047218(n+2) with equality for n <= 17 and even n <= 34.
Conjecture: a(n) = round(n/log(3/2) + 3).

A063093 Dimension of the space of weight 2n cusp forms for Gamma_0( 25 ).

Original entry on oeis.org

0, 5, 9, 15, 19, 25, 29, 35, 39, 45, 49, 55, 59, 65, 69, 75, 79, 85, 89, 95, 99, 105, 109, 115, 119, 125, 129, 135, 139, 145, 149, 155, 159, 165, 169, 175, 179, 185, 189, 195, 199, 205, 209, 215, 219, 225, 229, 235, 239, 245
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2001

Keywords

Comments

If b(n) is the sequence of integers congruent to {0,3} (mod 5) and c(n) is the sequence of integers congruent to {2,4}(mod 5). Then a(n) = b(n) + c(n). Equivalently a(n) = A047218(n+1) + A047211(n). - Anthony Hernandez, Aug 16 2016

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x^2*(5 + 4 x + x^2)/((1 - x)^2*(1 + x)), {x, 0, 50}], x] (* Michael De Vlieger, Aug 26 2016 *)
    LinearRecurrence[{1,1,-1},{0,5,9,15},50] (* Harvey P. Dale, Apr 09 2019 *)

Formula

a(n) = 10*n - a(n-1) - 16 for n>2, with a(1)=0, a(2)=5. - Vincenzo Librandi, Aug 07 2010
From Colin Barker, Sep 26 2012: (Start)
a(n) = ((-1)^n + 10*n - 11)/2 for n>1.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
G.f.: x^2*(5+4*x+x^2)/((1-x)^2*(1+x)). (End)
Sum_{n>=2} (-1)^n/a(n) = sqrt(5+2*sqrt(5))*Pi/20 - 3*sqrt(5)*log(phi)/20 - log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A063281 Dimension of the space of weight n cuspidal newforms for Gamma_1( 8 ).

Original entry on oeis.org

-1, 0, 1, 3, 3, 5, 5, 8, 7, 10, 9, 13, 11, 15, 13, 18, 15, 20, 17, 23, 19, 25, 21, 28, 23, 30, 25, 33, 27, 35, 29, 38, 31, 40, 33, 43, 35, 45, 37, 48, 39, 50, 41, 53, 43, 55, 45, 58, 47, 60, 49, 63, 51, 65, 53, 68, 55, 70, 57, 73, 59, 75, 61, 78, 63, 80
Offset: 2

Views

Author

N. J. A. Sloane, Jul 14 2001

Keywords

Crossrefs

Cf. A005408 (bisection), A047218 (bisection).

Formula

G.f.: x^2*(2*x^5 +3*x^4 +3*x^3 +2*x^2 -1)/((x -1)^2*(x +1)^2*(x^2 +1)). [Colin Barker, Sep 28 2012]

A328986 The sequence C(n) defined in the comments (A and B smallest missing numbers, offset 1).

Original entry on oeis.org

4, 10, 16, 21, 28, 33, 39, 45, 51, 57, 62, 68, 74, 80, 86, 91, 98, 103, 109, 115, 120, 127, 132, 138, 144, 150, 156, 161, 168, 173, 179, 185, 190, 197, 202, 208, 214, 220, 226, 231, 237, 243, 249, 255, 260, 267, 272, 278, 284, 290, 296, 301, 307, 313, 319
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2019

Keywords

Comments

Define a triple of sequences A,B,C by A[1]=1, B[1]=2, C[1]=4; for n>=2, A[n] = smallest missing number from the terms of A,B,C defined so far; B[n] = = smallest missing number from the terms of A,B,C defined so far; C[n] = n+A[n]+B[n].
Then A = A286660, B = A080652, C = the present sequence.
Inspired by the triples [A003144, A003145, A004146] and [A298468, A298469, A047218].

Examples

			The initial terms are:
n: 1, 2, 3, 4,  5,  6,  7,  8.  9. 10. 11, 12, ...
A: 1, 3, 6, 8, 11, 13, 15, 18, 20, 23, 25, 27, ...
B: 2, 5, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, ...
C: 4, 10, 16, 21, 28, 33, 39, 45, 51, 57, 62, 68, ...
		

Crossrefs

Previous Showing 31-36 of 36 results.