cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A047371 Numbers that are congruent to {0, 2, 3, 5} mod 7.

Original entry on oeis.org

0, 2, 3, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 37, 38, 40, 42, 44, 45, 47, 49, 51, 52, 54, 56, 58, 59, 61, 63, 65, 66, 68, 70, 72, 73, 75, 77, 79, 80, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 107, 108, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0, 2, 3, 5]]; // Wesley Ivan Hurt, Jun 04 2016
  • Maple
    seq(floor((7*n-6)/4), n=1..56); # [Gary Detlefs, Mar 06 2010]
  • Mathematica
    Table[I^(-n)*((14n-15)*I^n+I-1-(1+I)*I^(2n)+I^(-n))/8, {n, 80}] (* Wesley Ivan Hurt, Jun 04 2016 *)
    LinearRecurrence[{1,0,0,1,-1},{0,2,3,5,7},70] (* Harvey P. Dale, Oct 24 2018 *)

Formula

a(n) = floor((7n-6)/4). [Gary Detlefs, Mar 06 2010]
G.f.: x^2*(2+x+2*x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = i^(-n)*((14*n-15)*i^n+i-1-(1+i)*i^(2*n)+i^(-n))/8 where i=sqrt(-1).
a(2k) = A047385(k), a(2k-1) = A047355(k). (End)
E.g.f.: (8 + sin(x) - cos(x) + (7*x - 8)*sinh(x) + 7*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, Jun 04 2016

A198269 Ceiling(n*sqrt(12)).

Original entry on oeis.org

0, 4, 7, 11, 14, 18, 21, 25, 28, 32, 35, 39, 42, 46, 49, 52, 56, 59, 63, 66, 70, 73, 77, 80, 84, 87, 91, 94, 97, 101, 104, 108, 111, 115, 118, 122, 125, 129, 132, 136, 139, 143, 146, 149, 153, 156, 160, 163, 167, 170, 174, 177, 181, 184, 188
Offset: 0

Views

Author

Vincenzo Librandi, Oct 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(n*Sqrt(12)): n in [0..60]]
  • Mathematica
    Ceiling[Sqrt[12]Range[0,60]] (* Harvey P. Dale, Aug 27 2013 *)
Previous Showing 11-12 of 12 results.