A047409 Numbers that are congruent to {0, 1, 4, 6} mod 8.
0, 1, 4, 6, 8, 9, 12, 14, 16, 17, 20, 22, 24, 25, 28, 30, 32, 33, 36, 38, 40, 41, 44, 46, 48, 49, 52, 54, 56, 57, 60, 62, 64, 65, 68, 70, 72, 73, 76, 78, 80, 81, 84, 86, 88, 89, 92, 94, 96, 97, 100, 102, 104, 105, 108, 110, 112, 113, 116, 118, 120, 121, 124
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 1, 4, 6]]; // Wesley Ivan Hurt, May 24 2016
-
Maple
A047409:=n->(8*n-9-I^(2*n)+I^(-n)+I^n)/4: seq(A047409(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
-
Mathematica
Select[Range[0,110], MemberQ[{0,1,4,6}, Mod[#,8]]&] (* Harvey P. Dale, Sep 28 2011 *)
Formula
G.f.: x^2*(1 + 3*x + 2*x^2 + 2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
a(n) = (8*n - 9 - i^(2n) + i^(-n) + i^n)/4 where i=sqrt(-1).
E.g.f.: (4 + cos(x) + 4*(x - 1)*sinh(x) + (4*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, May 25 2016
Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*Pi/16 + (10 - sqrt(2))*log(2)/16 + sqrt(2)*log(2 + sqrt(2))/8. - Amiram Eldar, Dec 20 2021
a(n) = 2*(n-1) + floor((n+1)/4) - floor((n+2)/4). - Ridouane Oudra, Aug 19 2024
Comments