cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A047409 Numbers that are congruent to {0, 1, 4, 6} mod 8.

Original entry on oeis.org

0, 1, 4, 6, 8, 9, 12, 14, 16, 17, 20, 22, 24, 25, 28, 30, 32, 33, 36, 38, 40, 41, 44, 46, 48, 49, 52, 54, 56, 57, 60, 62, 64, 65, 68, 70, 72, 73, 76, 78, 80, 81, 84, 86, 88, 89, 92, 94, 96, 97, 100, 102, 104, 105, 108, 110, 112, 113, 116, 118, 120, 121, 124
Offset: 1

Views

Author

Keywords

Comments

All squares and the products of any terms belong to the sequence. This sequence (n > 1) is closed under multiplication. - Klaus Purath, Feb 13 2023

Crossrefs

Programs

Formula

G.f.: x^2*(1 + 3*x + 2*x^2 + 2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
a(n) = (8*n - 9 - i^(2n) + i^(-n) + i^n)/4 where i=sqrt(-1).
a(2k) = A047452(k), a(2k-1) = A008586(k-1) for k > 0. (End)
E.g.f.: (4 + cos(x) + 4*(x - 1)*sinh(x) + (4*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, May 25 2016
Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*Pi/16 + (10 - sqrt(2))*log(2)/16 + sqrt(2)*log(2 + sqrt(2))/8. - Amiram Eldar, Dec 20 2021
a(n) = 2*(n-1) + floor((n+1)/4) - floor((n+2)/4). - Ridouane Oudra, Aug 19 2024

A047554 Numbers that are congruent to {1, 2, 6, 7} mod 8.

Original entry on oeis.org

1, 2, 6, 7, 9, 10, 14, 15, 17, 18, 22, 23, 25, 26, 30, 31, 33, 34, 38, 39, 41, 42, 46, 47, 49, 50, 54, 55, 57, 58, 62, 63, 65, 66, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 89, 90, 94, 95, 97, 98, 102, 103, 105, 106, 110, 111, 113, 114, 118, 119, 121, 122, 126
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [1, 2, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
  • Maple
    A047554:=n->2*n+(1+I)*(2*I-2-(1-I)*I^(2*n)-I^(1-n)+I^n)/4: seq(A047554(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
  • Mathematica
    Select[Range[120],MemberQ[{1,2,6,7},Mod[#,8]]&] (* Harvey P. Dale, Nov 29 2011 *)

Formula

From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x*(1+x+4*x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 2*n+(1+i)*(2*i-2-(1-i)*i^(2*n)-i^(1-n)+i^n)/4 where i=sqrt(-1).
a(2k) = A047524(k), a(2k-1) = A047452(k). (End)
E.g.f.: (2 - sin(x) + cos(x) + (4*x - 1)*sinh(x) + (4*x - 3)*cosh(x))/2. - Ilya Gutkovskiy, May 30 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/8 (A193887). - Amiram Eldar, Dec 24 2021

A047397 Numbers that are congruent to {0, 1, 2, 6} mod 8.

Original entry on oeis.org

0, 1, 2, 6, 8, 9, 10, 14, 16, 17, 18, 22, 24, 25, 26, 30, 32, 33, 34, 38, 40, 41, 42, 46, 48, 49, 50, 54, 56, 57, 58, 62, 64, 65, 66, 70, 72, 73, 74, 78, 80, 81, 82, 86, 88, 89, 90, 94, 96, 97, 98, 102, 104, 105, 106, 110, 112, 113, 114, 118, 120, 121, 122
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 1, 2, 6]]; // Wesley Ivan Hurt, May 24 2016
  • Maple
    A047397:=n->(8*n-11+I^(2*n)+(1+2*I)*I^(-n)+(1-2*I)*I^n)/4: seq(A047397(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
  • Mathematica
    Table[(8n-11+I^(2n)+(1+2*I)*I^(-n)+(1-2*I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 24 2016 *)
    LinearRecurrence[{1,0,0,1,-1},{0,1,2,6,8},70] (* Harvey P. Dale, Dec 31 2017 *)

Formula

G.f.: x^2*(1+x+4*x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-11+i^(2*n)+(1+2*i)*i^(-n)+(1-2*i)*i^n)/4, where i=sqrt(-1).
a(2k) = A047452(k), a(2k-1) = A047467(k). (End)
E.g.f.: (4 + 2*sin(x) + cos(x) + (4*x - 6)*sinh(x) + (4*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, May 25 2016
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/16 + log(2)/2 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 20 2021

Extensions

More terms from Wesley Ivan Hurt, May 24 2016

A047439 Numbers that are congruent to {0, 1, 5, 6} mod 8.

Original entry on oeis.org

0, 1, 5, 6, 8, 9, 13, 14, 16, 17, 21, 22, 24, 25, 29, 30, 32, 33, 37, 38, 40, 41, 45, 46, 48, 49, 53, 54, 56, 57, 61, 62, 64, 65, 69, 70, 72, 73, 77, 78, 80, 81, 85, 86, 88, 89, 93, 94, 96, 97, 101, 102, 104, 105, 109, 110, 112, 113, 117, 118, 120, 121, 125
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=5 and b(k)=2^(k+1) for k>1. - Philippe Deléham, Oct 19 2011
G.f.: x^2*(1+4*x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
a(n) = Sum_{i=1..n} gcd(i+2, i-2). - Wesley Ivan Hurt, Jan 23 2014
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 2n+(1+i)*(4i-4-(1-i)*i^(2n)-i^(1-n)+i^n)/4 where i=sqrt(-1).
a(2n) = A047452, a(2n-1) = A047615(n). (End)
Sum_{n>=2} (-1)^n/a(n) = (2*sqrt(2)-1)*Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021

Extensions

More terms from Wesley Ivan Hurt, May 22 2016

A047508 Numbers that are congruent to {1, 4, 6, 7} mod 8.

Original entry on oeis.org

1, 4, 6, 7, 9, 12, 14, 15, 17, 20, 22, 23, 25, 28, 30, 31, 33, 36, 38, 39, 41, 44, 46, 47, 49, 52, 54, 55, 57, 60, 62, 63, 65, 68, 70, 71, 73, 76, 78, 79, 81, 84, 86, 87, 89, 92, 94, 95, 97, 100, 102, 103, 105, 108, 110, 111, 113, 116, 118, 119, 121, 124
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, May 27 2016: (Start)
G.f.: x*(1+2*x+x^3)/( (x-1)^2*(1+x^2) ).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = (1+i)*(4*n-4*n*i+i-1-i^(-n)+i^(1+n))/4 where i=sqrt(-1).
a(2k) = A047535(k), a(2k-1) = A047452(k). (End)
E.g.f.: (2 - sin(x) - cos(x) + (4*x - 1)*exp(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)+1)*Pi/16 + log(2)/8. - Amiram Eldar, Dec 24 2021

A047558 Numbers that are congruent to {1, 3, 6, 7} mod 8.

Original entry on oeis.org

1, 3, 6, 7, 9, 11, 14, 15, 17, 19, 22, 23, 25, 27, 30, 31, 33, 35, 38, 39, 41, 43, 46, 47, 49, 51, 54, 55, 57, 59, 62, 63, 65, 67, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 89, 91, 94, 95, 97, 99, 102, 103, 105, 107, 110, 111, 113, 115, 118, 119, 121, 123, 126
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x*(1+2*x+3*x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-3-i^(2*n)-i^(1-n)+i^(1+n))/4 where i=sqrt(-1).
a(2k) = A004767(k-1) for k>0, a(2k-1) = A047452(k). (End)
E.g.f.: (2 - sin(x) + (4*x - 1)*sinh(x) + (4*x - 2)*cosh(x))/2. - Ilya Gutkovskiy, May 30 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (2+sqrt(2))*Pi/16 + sqrt(2)*log(2+sqrt(2))/8 - (2+sqrt(2))*log(2)/16. - Amiram Eldar, Dec 24 2021

A047576 Numbers that are congruent to {1, 5, 6, 7} mod 8.

Original entry on oeis.org

1, 5, 6, 7, 9, 13, 14, 15, 17, 21, 22, 23, 25, 29, 30, 31, 33, 37, 38, 39, 41, 45, 46, 47, 49, 53, 54, 55, 57, 61, 62, 63, 65, 69, 70, 71, 73, 77, 78, 79, 81, 85, 86, 87, 89, 93, 94, 95, 97, 101, 102, 103, 105, 109, 110, 111, 113, 117, 118, 119, 121, 125
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x*(1+4*x+x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-1+i^(2*n)-(2+i)*i^(-n)-(2-i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047550(k), a(2k-1) = A047452(k). (End)
E.g.f.: (2 - sin(x) - 2*cos(x) - sinh(x) + 4*x*exp(x))/2. - Ilya Gutkovskiy, May 30 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*sqrt(2)*Pi/16 - (sqrt(2)+2)*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8. - Amiram Eldar, Dec 24 2021

A369801 Maximum number of segments between n points on a circle so that they can be colored in 2 colors so that each of them intersects (at an internal point) at most one other segment of the same color.

Original entry on oeis.org

1, 3, 6, 10, 15, 19, 24, 27, 32, 35, 40, 43, 48, 51, 56, 59, 64, 67, 72, 75, 80, 83, 88, 91, 96, 99, 104, 107, 112, 115, 120, 123, 128, 131, 136, 139, 144, 147, 152, 155, 160, 163, 168, 171, 176, 179, 184, 187, 192, 195, 200, 203, 208, 211, 216, 219, 224, 227
Offset: 2

Views

Author

Mladen Valkov, Feb 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[ -x^2*(x^7-2*x^4-2*x^3-2*x^2-2*x-1)/((x+1)*(x-1)^2),{x,0,59}],x],2] (* James C. McMahon, Mar 08 2024 *)
  • Python
    def A369801(n): return (n-2<<2)-(n&1) if n>=7 else (1, 3, 6, 10, 15)[n-2] # Chai Wah Wu, Mar 30 2024

Formula

a(n) = n*(n-1)/2 for n<=6, a(2*k+1) = 8*k-5 if k>=3, a(2*k) = 8*k-8 if k>=4.
G.f.: -x^2*(x^7-2*x^4-2*x^3-2*x^2-2*x-1)/((x+1)*(x-1)^2).
a(n) = A047452(n-2) + 2 = A047461(n-1) - 1 for n >= 7. - Hugo Pfoertner, Feb 05 2024
Previous Showing 11-18 of 18 results.