A047482 Numbers that are congruent to {1, 2, 5, 7} mod 8.
1, 2, 5, 7, 9, 10, 13, 15, 17, 18, 21, 23, 25, 26, 29, 31, 33, 34, 37, 39, 41, 42, 45, 47, 49, 50, 53, 55, 57, 58, 61, 63, 65, 66, 69, 71, 73, 74, 77, 79, 81, 82, 85, 87, 89, 90, 93, 95, 97, 98, 101, 103, 105, 106, 109, 111, 113, 114, 117, 119, 121, 122, 125
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
I:=[1, 2, 5, 7, 9]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 17 2012
-
Maple
A047482:=n->(-5-(-1)^n+(-I)^n+I^n+8*n)/4: seq(A047482(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
-
Mathematica
Select[Range[0,300], MemberQ[{1,2,5,7}, Mod[#,8]]&] (* Vincenzo Librandi, May 17 2012 *) LinearRecurrence[{1,0,0,1,-1},{1, 2, 5, 7, 9},100] (* G. C. Greubel, Jun 01 2016 *)
-
PARI
my(x='x+O('x^100)); Vec(x*(1+x+3*x^2+2*x^3+x^4)/((1-x)^2*(1+x)*(1+x^2))) \\ Altug Alkan, Dec 24 2015
Formula
From Colin Barker, May 14 2012: (Start)
a(n) = (-5 - (-1)^n + (-i)^n + i^n + 8*n)/4 where i=sqrt(-1).
G.f.: x*(1 + x + 3*x^2 + 2*x^3 + x^4)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 17 2012
E.g.f.: (2 + cos(x) + (4*x - 2)*sinh(x) + (4*x - 3)*cosh(x))/2. - Ilya Gutkovskiy, Jun 01 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+2)*Pi/16 + log(2)/8 + sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 24 2021
Comments