cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A370707 Triangle read by rows: T(n, k) = (-1)^k*Product_{j=0..k-1} (j - n)*(j + n), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 12, 1, 9, 72, 360, 1, 16, 240, 2880, 20160, 1, 25, 600, 12600, 201600, 1814400, 1, 36, 1260, 40320, 1088640, 21772800, 239500800, 1, 49, 2352, 105840, 4233600, 139708800, 3353011200, 43589145600, 1, 64, 4032, 241920, 13305600, 638668800, 24908083200, 697426329600, 10461394944000
Offset: 0

Views

Author

Peter Luschny, Feb 27 2024

Keywords

Comments

The definition, and also the representation T(n, k) = ff(n, k) * rf(n, k) (see the first formula), makes it natural to call this triangle the central factorial numbers.

Examples

			Triangle starts:
  [0] 1;
  [1] 1,  1;
  [2] 1,  4,   12;
  [3] 1,  9,   72,    360;
  [4] 1, 16,  240,   2880,   20160;
  [5] 1, 25,  600,  12600,  201600,   1814400;
  [6] 1, 36, 1260,  40320, 1088640,  21772800,  239500800;
  [7] 1, 49, 2352, 105840, 4233600, 139708800, 3353011200, 43589145600;
.
T(n, k) is a product where 'n' is the 'center' and 'k' is the 'half-length' of the product. For instance, T(5, 4) = (5-3)*(5-2)*(5-1)*5 * 5*(5+1)*(5+2)*(5+3) = 201600. Now consider the polynomial P(4, x) = -36*x^2 + 49*x^4 - 14*x^6 + x^8. Evaluating this polynomial at x = 5 shows P(4, 5) = 201600 = T(5, 4). The coefficients of the polynomial are row 4 of A269944.
		

Crossrefs

Diagonals: A002674, A327882.
Columns: A000290, A047928.
Cf. A370704 (row sums), A370706, A094728, A048994 (Stirling1), A130595 (order 0), A269947 (order 3)

Programs

  • Maple
    T := (n, k) -> local j; (-1)^k * mul((j - n)*(j + n), j = 0..k-1):
    seq(seq(T(n, k), k = 0..n), n = 0..8);
    # The central factorial numbers:
    cf := (n, k) -> ifelse(k = 0, 1, n*(n + k - 1)! / (n - k)! ):
    for n from 0 to 6 do seq(cf(n, k), k = 0..n) od;
    # Alternative (recurrence):
    T := proc(n, k) option remember;
    if k = 0 then 1 else T(n, k - 1)*(n^2 - (k - 1)^2) fi end:
    for n from 0 to 7 do seq(T(n, k), k = 0..n) od;
    # Illustrating the connection with the cf-polynomials and their coefficients:
    cfpoly := (n,x) -> local k; mul(x^2 - k^2, k = 0..n-1):
    A370707row := n -> local k; [seq(cfpoly(k, n), k = 0..n)]:
    A204579row := n -> local k; [seq(coeff(cfpoly(n, x), x, 2*k), k = 0..n)]:
    for n from 0 to 5 do lprint([n], A370707row(n), A204579row(n)) od;
  • Mathematica
    T[n_, k_] := If[n == 0, 1, -n Pochhammer[1 - n - k, 2 k - 1]];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
  • Python
    from math import prod
    def T(n, k): return (-1)**k * prod((j - n)*(j + n) for j in range(k))
    print([T(n, k) for n in range(8) for k in range(n + 1)])
  • SageMath
    def T(n, k): return falling_factorial(n, k) * rising_factorial(n, k)
    for n in range(9): print([T(n, k) for k in range(n + 1)])
    

Formula

T(n, k) = FallingFactorial(n, k) * RisingFactorial(n, k).
T(n, k) = (n*(n + k - 1)!)/(n - k)! if k > 0, and T(n, 0) = 1.
Calling the numbers in the second formula cf leads to the memorable form cf(n, k) = ff(n, k) * rf(n, k). This identity generalizes to the function
cf(x, n) = x*Gamma(x + n)/Gamma(x - n + 1) for n > 0 and cf(x, 0) = 1.
The last equation shows that the variable 'n' does not have to be an integer but can be any complex number if only the quotient remains defined (which one often can achieve by taking the limit). Indeed, in the classical Steffensen-Riordan case, n/2 is used instead of n, which leads to the complex situation Sloane discusses in A008955.
T(n, k) = -n*Pochhammer(1 - n - k, 2*k - 1) for n > 0.
T(n, k) = k!*binomial(n, k)*Pochhammer(n, k) = k!*A370706(n, k).
T(n, n) = n!*Pochhammer(n, n) (valid for n >= 0, whereas T(n, n) = (2*n)!/2 = A002674(n) is valid for n >= 1 only).
T(n, k) = T(n, k - 1)*(n^2 - (k - 1)^2) if k > 0, otherwise 1. (Recurrence)
The cf(n, k) are values of the polynomials Pcf(n, x) = Product_{k=0..n-1} (x^2 - k^2), whose coefficients vanish for odd powers and for even powers are A269944.
T(n, k) = Pcf(k, n) where Pcf(k,x) = Sum_{j=0..k} (-1)^(k-j)*A269944(k,j)*x^(2*j).
The central factorials can be described in three different ways: By the product T(n, k) = f(n, k) * rf(n, k), by the complex function cf(x, n), and through the polynomials Pcf(n, x). Although these relations are self-contained, they are regarded as only one-half of a more general notion, namely as central factorials of the first kind.
There is a fundamental connection with the Stirling numbers of first kind (A048994). The easiest way to see this is to generalize the definition: Let CF(z, s) = Product_{j=0..n-1} (z - s(j)), where s(j) is some complex sequence. Then the coefficients of CF(z, s) are equal to the Stirling_1 numbers if s = 0, 1, 2, ..., n, ..., and they are equal to the coefficients of our Pcf(n, z) polynomials if s = 0, 1, 4, ..., n^2, .... (This is also why A269944 is called the 'Stirling cycle numbers of order 2'. For completeness, if s = 1, 1, 1, ..., then the coefficients of CF(z, s), the 'Stirling cycle numbers of order 0', are the signed Pascal triangle A130595. See A269947 for order 3.)

A374374 Oblong numbers that are products of smaller oblong numbers.

Original entry on oeis.org

12, 72, 240, 420, 600, 1056, 1260, 2352, 4032, 6480, 7140, 9120, 9900, 10920, 14280, 14520, 18360, 20592, 20880, 28392, 38220, 46872, 50400, 65280, 78120, 82656, 83232, 104652, 123552, 129960, 147840, 159600, 194040, 233772, 245520, 262656, 278256, 279312
Offset: 1

Views

Author

Pontus von Brömssen, Jul 07 2024

Keywords

Comments

The oblong number (k^2+2*k)*(k^2+2*k+1) = A047928(k+2) is a term for all k >= 1, because it is the product of the oblong numbers k*(k+1) and (k+1)*(k+2).

Examples

			72 is a term because 72 = 8*9 = 6*12 = (2*3)*(3*4).
1056 is a term because 1056 = 32*33 = 2*2*2*132 = (1*2)*(1*2)*(1*2)*(11*12). (This is the first term that requires more than two factors.)
		

Crossrefs

A188660 is a subsequence (only 2 factors allowed).

A066116 a(n) = prime(n-2)*prime(n-1)^2*prime(n).

Original entry on oeis.org

90, 525, 2695, 11011, 31603, 71383, 141151, 291479, 599633, 1031153, 1739999, 2674471, 3563023, 5034311, 7789357, 11254073, 14709113, 19441859, 24655531, 29890361, 37814219, 48436559, 63771971, 84577501, 101918191, 114651463
Offset: 3

Views

Author

Henry Bottomley, Dec 05 2001

Keywords

Examples

			a(3) = 2*3^2*5 = 90.
		

Crossrefs

Cf. A047928.

Programs

  • PARI
    { for (n=3, 1000, a=prime(n-2)*prime(n-1)^2*prime(n); write("b066116.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 01 2010

Formula

a(n) = A000040(n-2)*A000040(n-1)^2*A000040(n) = A006094(n-1)*A006094(n) = A066117(3, n).

A064321 a(n) = n*(n-1)^3*(n-2)^3*(n-3).

Original entry on oeis.org

0, 0, 0, 0, 864, 17280, 144000, 756000, 2963520, 9483264, 26127360, 64152000, 143748000, 298995840, 584648064, 1085142240, 1926288000, 3290112000, 5433384960, 8710395264, 13600573920, 20741616000, 30968784000, 45361118880, 65295324864, 92508134400, 129168000000
Offset: 0

Views

Author

Henry Bottomley, Sep 10 2001

Keywords

Examples

			a(4) = 4*(3^3)*(2^3)*1 = 4*27*8*1 = 864.
		

Crossrefs

Programs

  • Maple
    A064321:=n->n*(n-1)^3*(n-2)^3*(n-3); seq(A064321(n), n=0..50); # Wesley Ivan Hurt, Feb 02 2014
  • Mathematica
    Table[n (n - 3) (n - 1)^3*(n - 2)^3, {n, 0, 50}] (* Wesley Ivan Hurt, Feb 02 2014 *)
  • PARI
    a(n) = { n*(n - 1)^3*(n - 2)^3*(n - 3) } \\ Harry J. Smith, Sep 11 2009
    
  • PARI
    concat([0,0,0,0], Vec(-288*x^4*(3*x^4+33*x^3+68*x^2+33*x+3)/(x-1)^9 + O(x^100))) \\ Colin Barker, Sep 14 2014

Formula

G.f.: -288*x^4*(3*x^4+33*x^3+68*x^2+33*x+3) / (x-1)^9. - Colin Barker, Sep 14 2014

A375623 Maximum value of F(p) = Sum (|i-j| - |p(i)-p(j)|)^2 where the sum is over all 1 <= i < j <= n, for all permutations p in the symmetric group S_n.

Original entry on oeis.org

0, 0, 0, 2, 12, 30, 72, 132, 240, 380, 600, 870, 1260, 1722, 2532, 3080
Offset: 0

Views

Author

W. Edwin Clark, Aug 21 2024

Keywords

Comments

The function F was defined by Dan Asimov on the Mailing list Math-Fun on Aug. 18, 2024. It can be considered as a sort of entropy of a permutation p like the function Sum_{k=1..n} (p(k)-k)^2 in A126972.
The terms for even n seem to agree with A047928.

Crossrefs

Programs

  • Maple
    F := proc(S) local i, j, M;
    M := 0;
    for j from 1 to nops(S) do
        for i from 1 to j-1 do
          M := M + (abs(i - j) - abs(S[i] - S[j]))^2
        od:
    od: M end:
    a := proc(n) local P, m, u, mm;
    P := combinat:-permute(n);
    m := 0;
    for u in P do
       mm := F(u);
       if mm > m then m := mm fi;
    od: m end:
  • PARI
    a375623(n) = my(m=0); forperm(n, p, m=max(m, sum(i=1,n, sum(j=1,i-1,(abs(i-j)-abs(p[i]-p[j]))^2)))); m \\ Hugo Pfoertner, Aug 22 2024

Extensions

a(11)-a(13) from Hugo Pfoertner, Aug 23 2024
a(14) from Markus Sigg, Aug 25 2024
a(15) from Hugo Pfoertner, Sep 04 2024

A363916 Array read by descending antidiagonals. A(n, k) = Sum_{d=0..k} A363914(k, d) * n^d.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 6, 6, 4, 1, 0, 0, 12, 24, 12, 5, 1, 0, 0, 30, 72, 60, 20, 6, 1, 0, 0, 54, 240, 240, 120, 30, 7, 1, 0, 0, 126, 696, 1020, 600, 210, 42, 8, 1, 0, 0, 240, 2184, 4020, 3120, 1260, 336, 56, 9, 1
Offset: 0

Views

Author

Peter Luschny, Jul 04 2023

Keywords

Comments

Row n gives the number of n-ary sequences with primitive period k.
See A074650 and A143324 for combinatorial interpretations.

Examples

			Array A(n, k) starts:
[0] 1, 0,  0,   0,    0,     0,      0,       0,        0, ... A000007
[1] 1, 1,  0,   0,    0,     0,      0,       0,        0, ... A019590
[2] 1, 2,  2,   6,   12,    30,     54,     126,      240, ... A027375
[3] 1, 3,  6,  24,   72,   240,    696,    2184,     6480, ... A054718
[4] 1, 4, 12,  60,  240,  1020,   4020,   16380,    65280, ... A054719
[5] 1, 5, 20, 120,  600,  3120,  15480,   78120,   390000, ... A054720
[6] 1, 6, 30, 210, 1260,  7770,  46410,  279930,  1678320, ... A054721
[7] 1, 7, 42, 336, 2352, 16800, 117264,  823536,  5762400, ... A218124
[8] 1, 8, 56, 504, 4032, 32760, 261576, 2097144, 16773120, ... A218125
A000012|A002378| A047928   |   A218130     |      A218131
    A001477,A007531,    A061167,        A133499,   (diagonal A252764)
.
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,  1;
[3] 0, 0,  2,   1;
[4] 0, 0,  2,   3,   1;
[5] 0, 0,  6,   6,   4,   1;
[6] 0, 0, 12,  24,  12,   5,  1;
[7] 0, 0, 30,  72,  60,  20,  6, 1;
[8] 0, 0, 54, 240, 240, 120, 30, 7, 1;
		

Crossrefs

Variant: A143324.
Rows: A000007 (n=0), A019590 (n=1), A027375 (n=2), A054718 (n=3), A054719 (n=4), A054720, A054721, A218124, A218125.
Columns: A000012 (k=0), A001477 (k=1), A002378 (k=2), A007531(k=3), A047928, A061167, A218130, A133499, A218131.
Cf. A252764 (main diagonal), A074650, A363914.

Programs

  • Maple
    A363916 := (n, k) -> local d; add(A363914(k, d) * n^d, d = 0 ..k):
    for n from 0 to 9 do seq(A363916(n, k), k = 0..8) od;
  • SageMath
    def A363916(n, k): return sum(A363914(k, d) * n^d for d in range(k + 1))
    for n in range(9): print([A363916(n, k) for k in srange(9)])
    def T(n, k): return A363916(k, n - k)

Formula

If k > 0 then k divides A(n, k), see the transposed array of A074650.
If k > 0 then n divides A(n, k), see the transposed array of A143325.
Previous Showing 11-16 of 16 results.