A340806 a(n) = Sum_{k=1..n-1} (k^n mod n).
0, 1, 3, 2, 10, 13, 21, 4, 27, 45, 55, 38, 78, 77, 105, 8, 136, 93, 171, 146, 210, 209, 253, 172, 250, 325, 243, 294, 406, 365, 465, 16, 528, 561, 595, 402, 666, 665, 741, 372, 820, 673, 903, 726, 945, 897, 1081, 536, 1029, 1125, 1275, 1170, 1378, 765, 1485
Offset: 1
Keywords
Links
- Sebastian Karlsson, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> add(k&^n mod n, k=1..n-1): seq(a(n), n=1..55); # Alois P. Heinz, Feb 13 2021
-
PARI
a(n) = sum(k=1, n-1, lift(Mod(k, n)^n)); \\ Michel Marcus, Jan 22 2021
-
Python
def a(n): return sum([pow(k,n,n) for k in range(1, n)]) for n in range(1, 56): print(a(n), end=', ')
Formula
a(n) = n*A010848(n)/2, if n is odd.
a(n) = n*(n-1)/2, if n is both odd and squarefree.
a(p^e) = (1/2)*(p-1)*p^(2*e-1), if p is an odd prime.
a(2^e) = 2^(e-1).
Comments