A382676
a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+2,2) * Stirling2(n+1,k+1)^2.
Original entry on oeis.org
1, 4, 52, 1372, 60316, 3964684, 363503932, 44280657292, 6913081723516, 1345238707327564, 319137578070718012, 90648956570718822412, 30369040605677566161916, 11848724306426305222109644, 5325560174867275152102351292, 2731649923185995549312271694732
Offset: 0
-
a(n) = sum(k=0, n, k!^2*binomial(k+2, 2)*stirling(n+1, k+1, 2)^2);
A213977
Number of n X n matrices with entries 0 and 1 and no 2 X 2 submatrix of form [ 1 1; 0 0 ].
Original entry on oeis.org
1, 2, 14, 200, 3536, 67472, 1423168, 34048352, 927156224, 28490354432, 976839578624, 36983803914752, 1532587515049984, 68997562105014272, 3353462146559209472, 175003916852177604608, 9760034505494167420928, 579311442062239341412352, 36462558160899681920745472, 2425761875540844266778656768
Offset: 0
- Joerg Arndt, Table of n, a(n) for n = 0..100
- Hyeong-Kwan Ju, Seunghyun Seo, Enumeration of 0/1-matrices avoiding some 2x2 matrices, arXiv:1107.1299 [math.CO], 2011.
- H.-K. Ju and S. Seo, Enumeration of (0,1)-matrices avoiding some 2 X 2 matrices, Discrete Math., 312 (2012), 2473-2481.
-
terms = 20; w = ProductLog[-x E^x]; CoefficientList[-2w/(x(w+1)) + (x^2-1) E^(2x) - 2x(x+1) E^(4x) + O[x]^terms, x]*Range[0, terms-1]! (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
-
N=66; x='x+O('x^N);
W(x)=sum(n=1,N, (-n)^(n-1)*x^n/n! );
w=W(-x*exp(x));
egf=-2*w/(x*(1+w)) + (x^2-1)*exp(2*x)-2*x*(x+1)*exp(4*x);
Vec(serlaplace(egf))
/* Joerg Arndt, Jul 19 2012 */
A297077
Number of distinct row and column sums for n X n (0, 1)-matrices.
Original entry on oeis.org
1, 2, 15, 328, 16145, 1475856, 219682183, 48658878080, 15047189968833, 6199170628499200, 3283463201858585471, 2174417430787021427712, 1760550428764505109190225, 1711145965399957937819322368, 1966168979042910307305159432375, 2636533865690624357354875499216896
Offset: 0
For n = 3, both of the following 3 X 3 (0,1)-matrices have identical row and column sums:
[1 0 1] [1 1 0]
[0 1 0] and [0 1 0]
[0 1 0] [0 0 1]
have row sums of [2 1 1] and column sums of [1 2 1].
So ([2 1 1], [1 2 1]) is one of the 328 possible row/column sums for a 3 X 3 matrix.
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- Mathematics Stack Exchange, Spanning forests of bipartite graphs and distinct row/column sums of binary matrices
- Lars Nagel & Tim Süß, Computing the Probability for Data Loss in Two-Dimensional Parity RAIDs, 2017 13th European Dependable Computing Conference (EDCC), 58-65.
- Rebecca J. Stones, Computing the number of h-edge spanning forests in complete bipartite graphs, Discrete Mathematics & Theoretical Computer Science, vol. 16, no. 1, pp. 313-326, 2014.
Cf.
A048163 gives the number of row/column sums that uniquely identify a matrix.
-
{1}~Join~Array[Length@ Union@ Map[Total /@ {Transpose@ #, #} &, Tuples[{0, 1}, {#, #}]] &, 4] (* Michael De Vlieger, Jan 11 2018 *)
A382678
a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+3,3) * Stirling2(n+1,k+1)^2.
Original entry on oeis.org
1, 5, 77, 2357, 118061, 8712245, 886143917, 118592620277, 20176999414061, 4249819031692085, 1084956766012858157, 329975948760472311797, 117851658189070970988461, 48830366210401091606537525, 23228207308210113849419226797, 12571433948267218576823401692917
Offset: 0
-
a(n) = sum(k=0, n, k!^2*binomial(k+3, 3)*stirling(n+1, k+1, 2)^2);
A306267
Number of permutations of [n] within distance floor(n/2) of a fixed permutation.
Original entry on oeis.org
1, 1, 2, 3, 14, 31, 230, 675, 6902, 25231, 329462, 1441923, 22934774, 116914351, 2193664790, 12764590275, 276054834902, 1805409270031, 44222780245622, 321113303226243, 8787513806478134, 70146437009397871, 2121181056663291350, 18462286083671614275
Offset: 0
A382826
a(n) = Sum_{k=0..n} (k! * Stirling1(n+1,k+1))^2.
Original entry on oeis.org
1, 2, 17, 337, 12152, 696076, 58136500, 6673107316, 1008077743552, 193915431216576, 46281189562936704, 13420575661095930240, 4647502230640182602496, 1894412230202331489632256, 897850527136410029486517504, 489578762044356075253626875136
Offset: 0
-
a(n) = sum(k=0, n, (k!*stirling(n+1, k+1, 1))^2);
A143381
Number of Hi-Lo arrangements HL(m,n) of a deck with n suits and m ranks in each suit, m>=1, n>=1.
Original entry on oeis.org
0, 2, 0, 6, 2, 0, 14, 30, 2, 0, 78, 230, 174, 2, 0, 230, 14094, 4834, 1092, 2, 0, 1902, 187106, 3785126, 114442, 7188, 2, 0, 6902, 26185806, 250560122, 1225289412, 2908990, 48852, 2, 0, 76110, 557115782, 682502468094, 423419180642
Offset: 1
The table of values HL(m,n) starts:
0 0 0 0 0 0 0 ...
2 2 2 2 2 2 2 ...
6 30 174 1092 7188 48852 339720 ...
14 230 4834 114442 2908990 77538470 2138286650 ...
78 14094 3785126 1225289412 442227602892 171398421245988 69859403814893544 ...
...
-
\r nseqadj.gp
{ f(m,n,k) = sum(j=0, k, (-1)^j * binomial(k,j) * binomial(k-j,n)^m ) }
{ HL0(m,n) = 2 * sum(k=n, (m/2)*n, f(m/2,n,k) * (f(m/2,n,k) + f(m/2,n,k+1)) ) } \\ for even m
{ HL1(m,n) = sum(i=n, (m\2)*n, f(m\2,n,i) * sum(j=n, (m\2)*n, f(m\2,n,j) * M([n,i,j]) )) } \\ for odd m
{ HL(m,n) = if(m%2, HL1(m,n), HL0(m,n) ) }
Comments